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ABSTRACT
The lack of well-defined protocols for interaction with the
operating system is a common source of defects in device
drivers. In this paper we investigate the use of a formal lan-
guage to define these protocols unambiguously. We present
a language that allows us to convey all important require-
ments for driver behaviour in a compact specification and
that can be readily understood by software engineers. It is
intended to close the communication gap between OS and
driver developers and enable more reliable device drivers.

Categories and Subject Descriptors: D.4.4 [Operating
systems]: Input/Output; D.3.2 [Programming Languages]:
Specialized Application Languages

General Terms: Languages.

1. INTRODUCTION
In order to use advanced features of I/O devices, such as

hot-plugging, power management and vectored I/O, oper-
ating systems define complex protocols for interaction with
device drivers. Failing to comply with a protocol leads to
subtle errors that are often manifested in corner cases, when
the driver handles an uncommon combination of events, e.g.,
receiving a hot-unplug notification while processing a power
management request. Such errors are particularly difficult
to detect during testing and code revision.

We believe that this type of defect is caused in part by
the lack of a precise specification of how a correct driver
should behave. Typically, OS documentation defines driver
interfaces in terms of a set of functions that the driver must
implement and a set of callbacks that the driver can invoke.
This leaves constraints on ordering, timing and arguments
of invocations implicit in the OS implementation. As a re-
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sult, the driver developer is forced to infer these constraints,
which easily leads to errors. Interestingly, as Ball et al. [1]
have discovered during an effort to formalise Windows driver
API rules, in more complex cases I/O framework develop-
ers themselves would disagree with one another about subtle

points in the rules. Clearly, in the absence of a common
agreement on how a correct driver should behave, develop-
ment of error-free drivers is, at the very least, problematic.

As part of an effort to develop a highly-reliable I/O frame-
work, we are investigating the use of a formal language to
specify devive driver protocols. The requirements for such
a language are that it (1) is sufficiently expressive to cap-
ture important constraints of the protocols, (2) is readily
understood by driver developers and (3) provides mecha-
nisms for modular specification of complex protocols. We
found that existing software protocol specification languages
do not satisfy these requirements. As a result we have de-
veloped a new specification language called Driver Protocol
State Machines (DPSM). DPSM is a visual language, which
uses a subset of the Statecharts [4] syntax and enhances it
with several new constructs, namely protocol dependencies,
subprotocols and protocol variables. DPSM specifications
are readily understandable to programmers and can be used
as central design documents that guide the development of
both device drivers and the I/O framework itself. The lan-
guage has well-defined semantics, which enables its use for
automated static and runtime analysis of driver behaviour.
The semantics are expressed by means of translation from
DPSM specifications to terms in the CSP process algebra [5].

The design of DPSM is driven by our experience specifying
and implementing real driver interfaces. We introduce a
construct to the language only if it has proved necessary to
model the behaviour of several types of drivers and can not
be easily expressed with other constructs.

Note that DPSM protocols are device-class specific, i.e.
a protocol describes common functionality of a class of de-
vices, such as Ethernet controllers or USB hubs, rather than
a particular device model. A protocol is defined by the OS
designer when support for a new device class is introduced
to the OS. Therefore, DPSM cannot be applied directly to
legacy systems that have been developed without a rigor-
ous model of driver behaviour in mind. Such systems could
gradually move to DPSM-defined protocols as they evolve;
existing drivers would continue to use old protocols, while
newly-developed drivers would use DPSM protocols. This
approach is not uncommon. The recent introduction of the
Windows Driver Foundation is one example of an OS grad-
ually switching to a new driver API.



In this paper we improve upon our earlier work [9] by de-
veloping a complete DPSM syntax and enhancing the lan-
guage with dynamic constructs, namely protocol variables
and subprotocols. In addition, we demonstrate the use of
DPSM on a realistic example: a USB hub driver protocol.

2. THE DINGO DRIVER FRAMEWORK
The DPSM language has been developed in tandem with

Dingo—a user-level driver framework that we are building
for the L4/Iguana [6] embedded OS. A driver in Dingo is rep-
resented as an object whose functionality is accessed through
ports (Figure 1). A port is a typed bidirectional message-
based communication point between the driver and the en-
vironment. For instance, a driver for a USB hub has three
ports: the lc port of type Lifecycle for messages related to
driver lifecycle control, the hub port of type USBHub that
exports the hub functionality to the operating system, and
the usb port of type USBInterface through which the driver
communicates with the USB bus driver.

In Dingo, drivers are single-threaded and non-blocking.
Operations that involve waiting for an external event, e.g.,
a hardware interrupt, are split into two non-blocking phases:
request and completion. This design decision is motivated
by reliability concerns. Multithreading in driver framework
APIs has been shown to constitute a major source of driver
bugs [2], while the benefits of multithreaded drivers are mini-
mal, if any, since the performance of most drivers is bounded
by device rather than CPU speed1. Having said that, we do
allow different drivers to be scheduled in different threads
and on different CPU cores.

3. DPSM SYNTAX AND SEMANTICS
The type or protocol of a port determines which sequences

of incoming and outgoing messages are permitted through
the port. A protocol specification in DPSM consists of sev-
eral sections, described below. To make the presentation
clear yet concise, we introduce the DPSM syntax using a
realistic example of a USB hub driver.

Messages. The messages section defines a protocol’s sig-
nature—the set of messages that can be exchanged through
the port. Message declarations follow the C++ syntax, but
without return type and with the addition of a direction
specifier. For instance, the Lifecycle protocol that all Dingo
drivers must implement has the following signature:

p r o t o co l L i f e c y c l e {
messages :

i n s t a r t ( ) ;
out s t a r tComp l e t e ( ) ;
out s t a r t F a i l e d ( e r r o r t e r r o r ) ;
i n s top ( ) ;
out s topComplete ( ) ;
i n unplugged ( ) ; /∗Hot unplug n o t i f i c a t i o n ∗/
. . .

Transitions. The transitions section defines protocol states
and state transitions. Designers and implementers of the
protocol work with the visual representation of the state
machine; the textual representation is only intended as input
to software tools.

1
One notable exception involves high-performance network con-

trollers with independent receive and transmit paths. In a single-
threaded framework such devices can be managed by two separate
drivers in order to exploit intrinsic parallelism.
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Figure 1: Ports of a USB hub driver.
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Figure 2: The Lifecycle protocol state machine.

Figure 2 shows the state machine of the Lifecycle proto-
col. States represent the conceptual states and activities of
the driver distinguishable at the protocol level. The syntax
of state transition labels is <trigger>[<guard>]/<action>,
the [<guard>] and <action> components are optional2 (Fig-
ure 3 shows an example label using all three components).
Transitions are triggered by messages sent to and from the
driver. Question marks (“?”) in trigger names denote in-
coming messages, exclamation marks (“!”) denote outgoing
messages. Guards and actions are expressions defined over
protocol variables (see below) and message arguments. A
transition is taken only if its guard evaluates to true.

The compact representation of complex protocols is achie-
ved by organising states into a hierarchy—a feature bor-
rowed from Statecharts. Several primitive states can be
clustered into a super-state. A transition originating from
a super-state preempts any of its internal states (e.g., the
?unplugged transition in Figure 2). If the state machine is
too large to fit in a single diagram, a super-state can be col-
lapsed into a simple state and its content can be moved to
a separate diagram.

The protocol state machine is interpreted as follows: any
message that triggers a valid state transition complies with
the protocol specification. A message that does not trigger
any valid transitions violates the protocol specification.

Dependencies. Most drivers implement several ports and
thus participate in several protocols. To define the be-
haviour required of a driver, it is often necessary to spec-
ify ordering constraints between messages of different pro-
tocols. In DPSM, such constraints are expressed by adding
the relevant messages of one protocol to the state machine
of another.

For example, a USB hub driver can only send or receive
messages through its hub port after the device has been
started and before it is stopped or unplugged. Start, stop
and unplug events correspond to messages of the Lifecycle
protocol. Therefore the USBHub protocol state machine
(Figure 4) has to synchronise with lifecycle messages. In

2
“[“ and “]” are literals, not meta characters.



pipe_running

!transferComplete  [params.req==requests.front()]/ 
requests.pop_front()

Figure 3: Example of a complex transition label.

the USBHub state diagram, messages that belong to the
Lifecycle protocol are prefixed with the protocol name. Ac-
cording to Figure 4, no USBHub messages are allowed before
?Lifecycle::start and after !Lifecycle::stopCompleted or ?Life-
cycle::unplugged, which reflects the above requirement.

In order to make dependencies among protocols explicit,
the protocol specification lists external messages that the
protocol can synchronise with in a separate section. For ex-
ample the USBHub protocol has the following dependencies:

dependencies :
l i s t e n s L i f e c y c l e : : s t a r t ;
l i s t e n s L i f e c y c l e : : s t a r tComp l e t e ;
l i s t e n s L i f e c y c l e : : s t a r t F a i l e d ;
l i s t e n s L i f e c y c l e : : unplugged ;
r e s t r i c t s L i f e c y c l e : : s top ;
l i s t e n s L i f e c y c l e : : s topComplete ;

This specification implicitly requires any driver implement-
ing a port of type USBHub to also implement a port of type
Lifecycle. The restricts and listens keywords describe two
types of protocol dependencies. The restricts dependency
means that the message is only allowed to be sent if it trig-
gers a state transition in both its main protocol (i.e., the
protocol that declares the message in its messages section)
and the dependent protocol. The listens dependency means
that the dependent protocol may react to the message but
does not restrict its possible occurrences.

Orthogonal regions. A device driver may be simultane-
ously involved in several loosely-related activities. Often,
these activities correspond to services provided by different
functional units of the controlled device. They are conve-
niently modelled using orthogonal regions [4], which make
the logical concurrency apparent and reduce the number of
explicit states. When the protocol state machine is in a state
with several orthogonal regions, each of the regions simulta-
neously constrains the driver behaviour. On state diagrams,
orthogonal regions are separated by dashed lines. For in-
stance, the active state in Figure 4 contains two orthogonal
regions: the top region describes the hub overcurrent notifi-
cation functionality, while the bottom region describes how
the driver reports the presence of external power.

Subprotocols. Many driver protocols involve dynamic cre-
ation of resources managed by the driver on behalf of the
client. This is particularly common for bus drivers. For ex-
ample, a USB bus driver may create hundreds of USB pipes
through which other drivers communicate with devices on
the bus. A resource is accessed according to its own pro-
tocol. We refer to it as a subprotocol of the main protocol.
Since the number of dynamically spawned resources is al-
ways bounded, the resulting state machine of the protocol is
finite. However it would be impractical to specify this state
machine without appropriate syntactic support. We there-
fore introduce the concepts of subprotocols and dynamic
subprotocol spawning in DPSM.

Dynamic spawning is expressed by means of the new op-
erator, which appears inside the action part of a transition

label and takes the name of a subprotocol and resource iden-
tifier as its arguments. For example, during initialisation the
hub driver enumerates physical ports of the hub and sends
a !portReportFeatures message to the OS for each detected
port (see the ports init state in Figure 4). This message es-
tablishes a new logical connection through which the OS will
control the physical port. In the protocol state machine,
connection establishment is expressed by the “new USB-
HubPort(params.portNum)” action, where USBHubPort is the
name of the physical port subprotocol and params.portNum
refers to the portNum argument of the !portReportFeatures
message, to be used as resource identifier. All messages that
belong to the subprotocol must carry a resource identifier as
their first argument. Alternatively a new resource could use
a port of its own rather than share the main port of the
protocol. In this case the address of the new port is used as
a resource identifier and subprotocol messages do not need
the extra argument.

The USBHubPort subprotocol (Figure 5) follows the same
syntax as normal protocol specification, except that sub-
protocol transition labels can use the parent keyword to
refer to messages of the main protocol. For example, the
USBHubPort subprotocol synchronises with power control
messages of the USBHub protocol (see the ?parent::hubOver-
current transition in the right-hand side of Figure 5). Main
protocol messages referenced by the subprotocol state ma-
chine must be listed among subprotocol dependencies.

The list of subprotocols is part of the protocol specifica-
tion. For instance, the USBHub protocol declares one sub-
protocol (the argument in parentheses defines the type and
name of the connection identifier):

p r o t o c o l s :
p r o t o co l USBHubPort ( u i n t 8 t portNum ) ;

Protocol variables. Another important feature of proto-
col state machines is protocol variables. Some elements of a
protocol are inconvenient to model with explicit states and
are more naturally described using variables. Currently, the
only permitted variable types are integers (which can also be
used to store pointers) and a small number of abstract data
types: queues, sets, and stacks. We expect the type system
to grow in future. Variables are declared in a separate sec-
tion inside the protocol specification and can be referenced
from protocol transition guards and triggers.

One common use of variables is to store requests handled
by the driver. For example, the USB bus driver maintains a
queue of data transfer requests for every open pipe. Incom-
ing requests are added to the tail of the queue, completed
requests are removed from the head of the queue. The re-
quest queue can be declared as follows:

v a r i a b l e s :
queue<u i n t p t r t > r e q u e s t s ;

The state transition in Figure 3 is extracted from the USB
pipe protocol. It specifies that a pipe must complete trans-
fers in the FIFO order by asserting that the request returned
by a !transferComplete message must be the same as the one
pointed to by the head of the requests queue.

Timeout states. Device driver protocols often involve tim-
ing constraints. To capture these constraints, DPSM allows
annotating states with timing bounds to be monitored by
watchdog timers. A protocol is violated if, after entry into
such a state, the given amount of time passes without the
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Figure 4: USBHub protocol

triggering of a transition leading to a different state. For ex-
ample, the power init state in Figure 4 has a label indicating
that the driver should report the status of the external power
supply within 5 seconds after completing initialisation.

Semantics. We assign precise meaning to DPSM con-
structs by defining a translation from protocol specifications
to the Communicating Sequential Processes [5] formalism.
CSP allows natural interpretation of advanced DPSM fea-
tures, such as dynamic subprotocol spawning and protocol
variables, including infinite-state variables such as queues.
The idea of the translation is to construct a CSP process that
accepts any sequence of messages permitted by the protocol
but deadlocks on illegal sequences. Due to space limitations,
we do not describe details of the translation. Given this
translation, one could, in principle, specify driver protocols
directly in CSP. However, CSP does not provide the right
level of abstraction for this task and would not be a conve-
nient tool for both protocol designers and implementers.

4. APPLICATIONS
DPSM encourages the state-machine approach to driver

design. The developer defines a set of variables that reflect
the protocol state and updates these variables on relevant
events, as prescribed by the protocol. By making explicit the
set of events that the driver should handle or generate in any
state, DPSM simplifies the development and thereby reduces
errors. One promising idea that we are exploring is to use
Statecharts as an implementation language for drivers. The
advantage of this approach is that protocol specifications
can be used as a ready-made skeleton for the driver, which
needs to be filled with device-specific operations.

The well-defined semantics of DPSM enables its use be-
yond documentation. First, DPSM specifications can be
compiled into executable components that are interposed
between the driver and the OS to detect runtime protocol
violations. This forms the basis of the failure recovery in-
frastructure that we are building into Dingo.

Second, we are investigating the possibility of statically

checking a driver for protocol compliance. Given a CSP
representation of a protocol, we can transform it into an
abstract model of driver behaviour. More precisely, we con-
struct a new CSP process that deterministically accepts any
messages that a real driver is required to accept and non-
deterministically sends any messages that the driver is al-
lowed to send. Any correct driver should be a refinement
of this abstract model. Thus, the task of protocol compli-
ance verification is reduced to a well-defined task of CSP
refinement checking. A lot of work still remains to be done
as the most complicated part of refinement checking is ex-
traction of relevant control flow information from the driver
source code. Feasibility of such source code analysis has
been demonstrated by Ball et al. [1].

Other applications being considered include formal verifi-
cation of the I/O framework implementation itself and con-
struction of provably-correct driver recovery protocols.

5. RELATED WORK
The software engineering community has developed a num-

ber of software protocol specification languages, most notice-
ably UML Protocol State Machines (PSM) [8]. Like DPSM,
PSM is based on the Statecharts visual syntax, which al-
lows modelling complex protocols using hierarchy and con-
currency and makes PSM specifications easy to understand.
However, neither PSM nor other languages we have investi-
gated allow the expression of protocol dependencies, proto-
col variables and subprotocols.

In the operating systems community, the SLAM [1] and
Singularity [3] projects have used state-machine based for-
malisms to specify driver interfaces. Both formalisms pro-
vide a form of subprotocol spawning but do not support pro-
tocol dependencies nor infinite-state variables, such as sets
and queues (Singularity does not support protocol variables
at all). As a result, they only partially capture the require-
ments of driver protocols. Besides this, neither SLAM nor
Singularity provide a means for structuring complex proto-
cols and do not aim to make protocol specifications easy to
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Figure 5: USBHubPort sub-protocol

understand and work with. The reason for these limitations
is that SLAM and Singularity use formal protocol specifi-
cations solely for static-analysis purposes. Properties that
cannot be statically verified, e.g., those involving infinite-
state variables, are excluded from the formalism. Clarity
and manageability are not among addressed issues. In con-
trast, we separate specification from verification. The pri-
mary purpose of DPSM specifications is to serve as guide-
lines for driver developers. As mentioned in the previous
section, they can also be used as properties against which
driver implementations can be statically verified.

The Devil [7] project has developed a language for de-
scribing the functional interface of a device in terms of its
memory and register layouts, for use by device drivers. This
is complementary to DPSM, which is intended for specifying
the software interface of a driver.

6. EXPERIENCE AND CONCLUSIONS
To date, we have specified a number of protocols in DPSM,

including protocols for Ethernet controller drivers, USB bus
and hub drivers, interrupt controller drivers and others. We
found the language to be sufficiently expressive to capture
all the requirements for driver behaviour that we identified.
Moreover, we found none of the language features to be
redundant. In particular, protocol dependencies, protocol
variables, and subprotocols are essential to modelling driver
behaviour and cannot be expressed with other constructs.

DPSM specifications tend to be highly compact. Quite
complex protocols fit into two or three screen-size diagrams
and tens of lines of textual specification. For instance, the
USB hub protocol is completely specified by diagrams in
Figures 4 and 5, and 50 lines of associated text3.

We have implemented each of the protocols in at least one
driver and found DPSM specifications to help greatly with
driver development, making the otherwise intricate driver

3
The diagrams have been only slightly simplified to fit into the paper.

control logic straightforward and helping to avoid errors.
We also tested runtime failure detection on the example of
the RTL8139 Ethernet driver and were able to successfully
detect protocol violations, such as the driver polling the out-
put packet queue despite being notified that there are no
packets available for transmission.

Development of a protocol for a new family of drivers is a
difficult task that proceeds in many iterations and requires
a deep understanding of relevant hardware specifications as
well as driver and I/O framework design issues. The use of
DPSM ensures that the result of this effort is not lost in the
bowels of the OS code but is preserved as a structured spec-
ification that conveys a great deal of knowledge about driver
behaviour in a compact form and can be readily understood
by software engineers. Thus we see the primary role of the
DPSM language in closing the communication gap between
I/O framework and driver developers and providing a formal
basis for the construction of reliable device drivers.
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