
An Approach to A Scalable
Wide-Area Web Service

An Approach to A Scalable
Wide-Area Web Service

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus Prof. dr. ir. J.T. Fokkema,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen
op donderdag 4 december 2003 om 13.00 uur

door

Ihor Theodore KUZ

doctorandus in de informatica
geboren te Toronto, Canada.

Dit proefschrift is goedgekeurd door de promotoren:

Prof. dr. ir. H.J. Sips
Prof. dr. ir. M.R. van Steen

Samenstelling promotiecommissie:

Rector Magnificus, voorzitter
Prof. dr. ir. H.J. Sips, Technische Universiteit Delft, promotor
Prof. dr. ir. M.R. van Steen, Vrije Universiteit Amsterdam, promotor
Prof. dr. ir. P. van Mieghem, Technische Universiteit Delft
Prof. dr. A.S. Tanenbaum, Vrije Universiteit Amsterdam
Prof. dr. P.M.E. de Bra, Technische Universiteit Eindhoven
Prof. dr. L.O. Hertzberger, Universiteit van Amsterdam
Dr. A.M. Kermarrec Microsoft Reasearch Cambridge, Groot-

Brittannië

The work described in this dissertation was completed as part of the JERA project.

Copyright c© 2003 by I.T. Kuz

All rights reserved. No part of the material protected by this copyright notice may be
reproduced or utilized in any form or by any means, electronic or mechanical, including
photocopying, recording or by any information storage and retrieval system, without the
prior permission of the author.

Cover picture Copyright c© 2003 by Evan Keller

Typeset by the author with the LATEX Documentation System.
Author email: ikuz@ikuz.org

Contents

Acknowledgements ix

1 Introduction 1
1.1 Problems with the Web . 2

1.1.1 Performance . 3
1.1.2 Scalability . 4

1.2 Requirements for a Solution . 6
1.2.1 Replication . 7
1.2.2 Summary . 8

1.3 Example . 9
1.4 GlobeDoc . 11
1.5 Contributions . 12
1.6 Outline . 12

2 Current Solutions 13
2.1 Client-Oriented Solutions . 13

2.1.1 Cache Architectures . 14
2.1.2 Design Issues . 19

2.2 Server-Side Solutions . 22
2.2.1 Server clustering . 23

2.3 Replication-based Solutions . 27
2.3.1 Replication Issues . 28
2.3.2 Mirroring . 29
2.3.3 Content Distribution Networks 29

2.4 Per-document Solutions . 36
2.4.1 Experimental Setup . 36
2.4.2 System Configurations . 40
2.4.3 Results . 43

3 The GlobeDoc Approach 47
3.1 Globe Overview . 47

3.1.1 Globe Object Model . 48
3.1.2 Globe System Model . 52

i

ii CONTENTS

3.1.3 Globe Programming Model . 55
3.2 GlobeDoc Model . 55

3.2.1 GlobeDoc Interfaces . 56
3.2.2 Transactions and Locking . 60
3.2.3 Persistent and Transient GlobeDoc Objects 62
3.2.4 Naming and Binding . 63
3.2.5 Alternative Models . 64

3.3 Replication Policies . 67
3.4 GlobeDoc System Architecture . 67

3.4.1 Overview . 67
3.4.2 The Architecture Elements . 70

4 GlobeDoc Architecture Details 77
4.1 Object Server . 77

4.1.1 Object Server Management Component 78
4.1.2 LR Management Component . 81
4.1.3 Globe Runtime Services Component 95
4.1.4 Local Storage Management Component 100
4.1.5 Network Management Component 102

4.2 Implementation Repository . 111
4.2.1 Class Archive . 111
4.2.2 The Repository . 115
4.2.3 Class Loader . 120

4.3 Clients . 121
4.3.1 GlobeDoc-aware Clients . 121
4.3.2 GlobeDoc-unaware Clients . 128
4.3.3 GlobeDoc-aware Clients versus GlobeDoc-unaware Clients . . . 132
4.3.4 Partially GlobeDoc-aware Clients 133
4.3.5 GlobeDoc Object Caching in Clients 133

4.4 Shared Local Replicas . 137

5 Globe Infrastructure Directory Service 141
5.1 GIDS Architecture . 142

5.1.1 Local resource management . 143
5.1.2 Global resource management . 146

5.2 Implementation . 149
5.2.1 LDAP . 149
5.2.2 DNS . 155
5.2.3 Security . 157

5.3 Related work . 158
5.4 Evaluation . 160

CONTENTS iii

6 Performance Evaluation 161
6.1 Profiling . 162
6.2 Experiment Setup . 164
6.3 Measurements . 167
6.4 Experiments and Results . 171

6.4.1 Experiment 1: Background Activity 171
6.4.2 Experiment 2: System Performance 172

6.5 Conclusion . 184

7 Summary and Conclusions 187
7.1 Summary . 187
7.2 Conclusions . 189

7.2.1 Evaluation . 189
7.2.2 Observations . 192

7.3 Future Work . 195
7.3.1 Replication Policies . 195
7.3.2 GlobeDoc-aware Clients . 195
7.3.3 Experiments . 195
7.3.4 Security . 196
7.3.5 Support for Dynamic Content 196

Bibliography 199

Summary 209

Samenvatting 213

Curriculum Vitae 217

Index 219

iv CONTENTS

List of Figures

2.1 Requesting a Web page using a browser cache. 14
2.2 Requesting a Web page through a proxy cache. 15
2.3 Requesting a Web page through a hierarchical cache. 16
2.4 Requesting a Web page through a distributed cache. 18
2.5 Requesting a Web page from a layer 2 server cluster. 24
2.6 Requesting a Web page from a layer 3 server cluster. 25
2.7 Requesting Web resources from a layer 7 clustered server. 26
2.8 Requesting a Web page from a mirror server. 30
2.9 Requesting a Web page through a Content Distribution Network. 31
2.10 The RaDaR architecture. 35
2.11 Experiment configuration. 38
2.12 Determining the network performance to a host based on ping samples. . 39
2.13 Number of requests per autonomous system. 41
2.14 Replica configuration. 42
2.15 Hybrid configuration. 43
2.16 Performance of arrangements vs. one-size-fits-all configurations. 46

3.1 Example of a Globe object distributed across four address spaces. 49
3.2 General structure of a local object. 50
3.3 Binding a process to a distributed shared object. 53
3.4 Globe’s worldwide search tree used for locating objects. 54
3.5 The GlobeDoc infrastructure. 68
3.6 GlobeDoc-aware client binding directly to object. 69

4.1 Structure of the Globe object server. 78
4.2 Steps involved in creating an LR. 82
4.3 Position of the LRManager subobject in relation to an LR’s other subobjects. 84
4.4 Example initialization data for a GlobeDoc LRManager. 86
4.5 Example contact address. 87
4.6 Steps involved in the LR destruction process. 88
4.7 A transient LR, an active persistent LR, and a passive persistent LR. . . . 91
4.8 Steps involved in the passivation of an active LR. 92

v

vi LIST OF FIGURES

4.9 Example LNS name space. 99
4.10 Objects involved in multiplexing a connectionless contact point. 105
4.11 Example of transmitting a message using a UDP/IP multiplexer. 106
4.12 Objects involved in multiplexing a connection oriented contact point. . . . 107
4.13 Objects involved in multiplexing a connection oriented connector. 108
4.14 Example of connecting to a connection oriented multiplexed contact point. 109
4.15 Fragment of a catalog file. 112
4.16 A composite implementation handle. 116
4.17 Implementation repository and the class loading process. 117
4.18 Steps involved in loading the code from a class archive. 119
4.19 Example of a GlobeDoc gateway in use. 129
4.20 Example of the GlobeDoc redirector in use. 132
4.21 Creating a shared local replica. 138

5.1 Base regions and a simple hierarchy. 145
5.2 GIDS with multiple region hierarchies. 149
5.3 Fragment of the schema that defines service registration attributes and

object classes. 151
5.4 Fragment of a schema that defines service configuration attributes and

object classes. 153
5.5 Example of an LDAP search filter . 154
5.6 Examples of a local and remote LDAP search filter 155
5.7 RSD with pre-processor and LDAP server. 156

6.1 Overview of request processing. 165
6.2 Setup of performance analysis experiment. 166
6.3 Work performed by a component when processing requests. 170
6.4 Work performed by a component when not processing requests. 171
6.5 Distribution of experiment parameter values in their parameter spaces. . . 173
6.6 Work done by the translator component. 174
6.7 Work done by the gateway component. 177
6.8 Work done by the naming service component. 178
6.9 Work done by the location service components. 180
6.10 Work done by the (replica) location service leaf node component. 181
6.11 Work done by the replica object server component. 182
6.12 Work done by master object server while processing requests. 183
6.13 Overview of the relative work done by components as the n parameter

increases. 185
6.14 Overview of the relative work done by components as the s parameter

increases . 185
6.15 Overview of the relative work done by components as the g parameter

increases . 186

7.1 GWC approach to dynamic content. 197

List of Tables

2.1 Characteristics of the collected traces . 43
2.2 Performance of the one-size-fits-all policies. 44

3.1 The GlobeDoc document interface. 57
3.2 The GlobeDoc content interface. 58
3.3 The GlobeDoc property interface . 59
3.4 The GlobeDoc lock interface . 61

4.1 Object Server Management Interface. 80
4.2 The distributed interface. 83
4.3 The persistentObject interface. 93
4.4 The perstResourceManager interface. 94
4.5 The binder interface. 96
4.6 The storage interface. 101
4.7 The storageManager interface. 101
4.8 The classArchEntry interface. 113
4.9 The classArch interface. 113
4.10 The classRepository interface. 115
4.11 The remoteRepository interface. 118
4.12 The classLoader interface. 121

5.1 RSD operations . 144

6.1 Experiment run parameters. 167
6.2 Results from experiment 1. Note that the GOS column refers to the replica

object server and the LS column refers to the replica location service leaf
node. 172

6.3 Statistical summary of the redirector. 175
6.4 Coefficients for regression analysis of the translator. 176
6.5 Model summary for regression analysis of the translator. 176
6.6 Coefficients for regression analysis of the gateway. 177
6.7 Model summary for regression analysis of the gateway. 177
6.8 Coefficients for regression analysis of the naming service. 179

vii

viii LIST OF TABLES

6.9 Model summary for regression analysis of the name server. 179
6.10 Coefficients for regression analysis of the location service replica leaf node.179
6.11 Model summary for regression analysis of the location service leaf node. . 180
6.12 Coefficients for regression analysis of the replica object server. 181
6.13 Model summary for regression analysis of the replica object server. 182
6.14 Coefficients for regression analysis of the RTT. 183
6.15 Model summary for regression analysis of the RTT. 184

Acknowledgements

The acknowledgements have finally been reached, this means that I am almost done. Per-
sonally, I always enjoy reading the acknowledgements in a dissertation. They help to add
a human side to the (usually technical) contents. Having said that, I now have to come up
with something that I would enjoy reading myself, so here goes.

Doing a Ph.D. is an adventurous journey. There are many obstacles in the way, many
ups, many downs, and a great deal of distractions too. Although it leads to an individual
accomplishment, there are many people that help out along the way. Whether they help
out with the research and writing, or whether they provide moral support, or the much
needed distractions, all of them deserve thanks and credit.

The first to get my thanks are both my advisors (promotors) Maarten van Steen and
Henk Sips. I have often heard Ph.D. students complaining that their advisors don’t give
them enough guidance and support. I must be lucky, because I’ve never had that prob-
lem. I have always gotten the best advice and guidance from both Maarten and Henk.
Maarten would meet with me weekly and was always involved with everything going
on — whether it was research or programming or writing. It was precisely Maarten’s
close involvement that made Henk’s more removed view of the research extremely use-
ful. Whereas many aspects of my work were so familiar to myself (and Maarten) that I
never questioned them or felt the need to look at alternatives, Henk always approached
the work from a different perspective, seeing problems and possibilities that I had com-
pletely missed. Henk also made sure that my descriptions of Globe and GlobeDoc were
understandable to more than just a select few members of the Globe group (the readers of
this dissertation should thank him for that too).

Next, I would like to thank all the members of my reading commission (Andy Tanen-
baum, Piet van Mieghem, Anne-Marie Kermarrec, Bob Hertzberger, and Paul de Bra).
I would like to thank you for your time and your comments. It amazes me that such
busy people would have time to read this dissertation much less provide such good and
insightful comments.

The research described in this dissertation was carried out as part of the JERA project.
As such, I would like to thank all the members of the project for making this possible.

Then there is the Globe group at the VU. Globe is a group effort so my thanks go out
to all of you. In particular I would like to acknowledge Guillaume Pierre’s and Patrick
Verkaik’s contribution to this dissertation. The experiments described in Chapter 2 were
designed and performed together with Guillaume. The description of these experiments

ix

x ACKNOWLEDGEMENTS

was taken, largely, from a paper written by Guillaume. Most of the object server architec-
ture, as described in Chapter 4, was implemented by Patrick. Some parts (in particular the
networking subobject) were designed together with Patrick as well. Patrick was a great
asset to the Globe project. Although it was sometimes frustrating to read and modify
his code, the code was good, and it worked. I would also like to thank Arno Bakker for
imparting to me some of that rare knowledge and wisdom that one gains after person-
ally experiencing (and surviving) the trials and tribulations of the Ph.D. process. Arno
also deserves thanks for helping me work out practical details of printing the thesis from
overseas.

Being a TU Delft AIO I also spent much of my time at the TU Delft itself. Although I
did not collaborate directly with my TU Delft colleagues, they were always open to good
discussions (about research and other things). I would like to thank everyone in the PDS
group for making my time in Delft a pleasant experience.

Having dealt with the colleagues it is now time to thank friends and family. I don’t
know if this is normal, but most of my friends (and family) know very little about com-
puters. Because of this it was always a challenge to try to explain what exactly I was
doing (I’m pretty sure that most of them still aren’t exactly sure what I’ve spent the past
six years doing). Now, in my case, explaining what my research was about was somewhat
easier because it had to do with the Web (and everyone’s heard of the Web!). As such, I
could get away with mentioning the Web, mumbling a bit about performance and replica-
tion and they could (realistically) pretend to understand me. Some even went so far as to
ask questions about the research and then bearing with me while I went off explaining the
intricacies of whatever I was working on at the time. Thanks for humoring me!

Friends also play very important roles as stress relievers. By providing enough dis-
tractions to allow me to forget the work and the deadlines you all helped enormously. I
appreciate all the climbing, skating, biking, music, partying, swimming, hackying, etc. I
wont list names here, you know who you are.

There are a two people who played special roles in my life during my PhD: Mar-
garita and Leonie. I would like to thank both of you for your patience, understanding,
motivation, and everything else.

Another important person is Suzan, who has probably had more of an influence than
she realizes. She (inadvertently) played an important role in my deciding to become an
AIO and pursue my Ph.D. Thank you for that, and thank you for the motivation and
friendship since then as well.

After friends comes family. But before I start, I would like to put Ulyana, my sister, in
her own category. I couldn’t decide whether to put you in the friends or family section, so
you get your very own section right here. Although as children we fought a lot, as we’ve
grown older we’ve become very close. Ulyano, you’ve always been there for me, even
when you lived far away. Thank you very much.

Ok, now the family (not that you are any less important of course). The main role of
the family is to keep on asking when I’ll be finished already. Well you’ve all done a great
job, and now I can happily say that I’m done! I’d specifically like to thank my Mom, for
everything past, present, and no doubt future, my Dad, for always keeping in touch, and

xi

always being close despite the great distances. And finally my thanks to Nick — you have
been a great influence in my life, one that I will always appreciate.

This is getting long, I know, but bear with me, we’ve almost reached the end.
During my PhD I also had the opportunity to join Joost, Frans, Leonard, Lars, and

Aiko in SmartHaven, our attempt at .com glory. Although I couldn’t put in as much of an
effort as you guys did, I want to thank you for letting me join the fun (and understanding
how important finishing my dissertation was to me). It was a great ride! On a sadder note,
I had never imagined that my Ph.D. would outlive the Smarthaven adventure, but, alas,
that’s the way it is.

Sydney, September 2003.

xii ACKNOWLEDGEMENTS

Chapter 1

Introduction

The World Wide Web is huge and there are no signs of its growth slowing down in the
near future. In terms of the number of available pages, it has been estimated that the Web
has grown from thousands of pages in 1993, through 320 million pages in 1997 and 800
million pages in 1998 to more than a billion pages in 2000 [58, 59, 57]. The number
of Web servers serving these pages has similarly grown from tens of thousands in 1995,
through half a million in 1996 and 8 million in 1999 to over 30 million in 2001 [50, 68].
A similar explosive growth pattern has been seen in the number of users accessing Web
pages, with 2001 showing this number to be well over 80 million.

With the size and growth attesting to its popularity, it is safe to say that the Web
is the world’s first globally used wide-area distributed application. However, when it
was first created in the early ’90s such massive growth (not only of the Web but of the
Internet as a whole) was unexpected. As such, the infrastructural design of the Web and
its fundamental protocols was fairly simple.

On an architectural level the Web is based on a client-server model. It is organized
as a decentralized collection of servers serving pages to browsers and other client appli-
cations. A Web page is a collection of Web resources (files accessible over the Web) and
consists of an HTML document and its embedded elements (such as images and media
fragments). Related Web pages are often grouped into a Web site. Usually all the Web
pages that make up a Web site are hosted at the same server, however, this is not a require-
ment. Each Web resource is identified by a Uniform Resource Locator (URL). A URL
identifies the server hosting the resource, the access protocol spoken by the server and the
identifier (e.g., path name) of the resource on the server. Given a resource’s URL, a client
wishing to access that resource must contact the server using the appropriate protocol
to request the resource using the given identifier. Upon receiving the request the server
fetches the identified resource and returns a copy to the client. The server and client com-
municate using the HyperText Transfer Protocol (HTTP). HTTP is a simple protocol that
allows clients to request resources and servers to return them.

Although the simplicity of the architectural design and the protocols is one of the key
factors behind the Web’s phenomenal growth, it is precisely this simplicity that caused

1

2 CHAPTER 1. INTRODUCTION

problems once the Web’s popularity started to rise. As more people started using the Web
it became clear that the initial infrastructure did not scale. Servers with popular content
became overloaded while networks all over the world became saturated due to Web traffic.
Note, however, that although the Web faces scalability problems, the underlying Internet
technology and infrastructure has scaled well in the face of its own explosive growth.

Despite all the work done so far, and the fact that both server and network technolo-
gies have grown fast enough to keep up with demand, the Web still suffers from severe
performance problems. One aspect common to all the research done so far is that it at-
tempts to improve and adapt the existing WWW infrastructure. It is my opinion that the
current solutions do not go far enough. It is the fundamental client-server nature of the
Web infrastructure that prevents it from gracefully scaling to current and future sizes.

The goal of this dissertation is to present an alternative architectural solution to the
Web’s scalability problems1. The central point behind the presented approach is that a
truly scalable distributed system cannot be built in an environment (such as the current
Web) that forces a ’one-size-fits-all’ view of distribution and communication. In order
for any distributed system (including the Web) to scale (up or down) it must be flexible
with regards to its distribution and communication policies. As will be explained later,
the current Web architecture does not fulfill these requirements.

Note that it is not the intention of this work to (attempt to) completely replace the cur-
rent Web infrastructure. In many cases it works fine as is, so there is no reason to replace
it (besides, with such a large installed user base, any proposal to completely replace the
current architecture would not stand a chance). Instead, the results of this work can be
seamlessly incorporated into the existing Web infrastructure.

1.1 Problems with the Web

There are many problems with the Web. The range of problems affects everyone in-
volved with the Web: users, content creators, content providers and network administra-
tors. These problems can be classified into four categories: content problems, metacontent
problems, content-organization problems, and infrastructure problems.

The first category, content problems, refers to problems experienced when creating,
interpreting and displaying Web content. This includes problems experienced by users
when browsers cannot properly display Web pages and problems experienced by con-
tent producers when content creation tools and resources are insufficient to achieve de-
sired effects. The causes of these problems vary from incomplete, incompatible or faulty
browsers, to the limitations on graphic design imposed by HTML and the attempts by
many third parties to overcome these limitations using mutually incompatible solutions.

The second category, metacontent problems, refers to problems experienced when
searching for and categorizing Web content. Given the large amount of content available
on the Web, finding specific content or information is a difficult task. Search engines
and Web directories attempt to ease this task by indexing and categorizing the available

1These scalability problems, including a precise definition of scalability, will be discussed later on in this
chapter.

1.1. PROBLEMS WITH THE WEB 3

content. Unfortunately, doing so is not easy. The amount of content available means that
manual categorization (such as that done by Yahoo!2) requires massive resources, and
even so only covers a small part of the available content. However, automatic catego-
rization of content suffers from a lack of metadata describing the available content. As
such, automatic categorization has to rely on extracting meaning from the content, and
techniques for doing so are not yet mature enough to produce good results.

The third category is that of organizational problems. Organizational problems are
those related to the organization of Web sites and the relationships between the pages that
make up a site. These problems most often manifest themselves as missing pages and
broken links to pages within a Web site. However, problems caused by a confusing layout
of a site also fall into this category. The causes of organizational problems vary from
deleted or moved content to complete reorganization of Web sites.

Finally, the fourth category concerns infrastructure problems. Infrastructure prob-
lems are those problems that are a direct result of the infrastructure (e.g., clients, servers
and networks) used. They manifest themselves as performance, fault tolerance, and se-
curity problems. Performance problems are those that affect the responsiveness of a Web
site, while fault tolerance problems are those that affect the stability and accessibility of a
Web site. Security problems relate to the vulnerability of Web sites to unauthorized access
and modification.

1.1.1 Performance

In this dissertation we are concerned with the category of infrastructure problems, and
in particular the performance aspect of these problems. As mentioned, performance
problems affect the responsiveness of a Web site. A Web site with good performance is
responsive and provides fast downloads of its content. A Web site with bad performance,
on the other hand, is slow in responding to user requests and provides slow downloads
of its content. In extreme cases low performance can cause a site to become effectively
unreachable.

Performance problems are an important category of problems because they affect ev-
eryone involved with the Web. Users are affected when the sites they try to reach have
slow response times. Content creators and providers are affected when they have to mod-
ify the content provided to prevent causing or aggravating decreased performance (for
example, a content provider might have to reduce the resolution of a popular film so that
downloads of that film do not congest the server’s network and thereby affect the whole
site’s performance). Network and system administrators are affected because they are the
ones that have to make sure that performance is adequate.

Performance problems are also important because they affect the heart of the Web.
When the available infrastructure cannot keep up with the growing demands, then other
problems pale in significance. For example, when a user cannot access a Web site due to
poor performance, the problems relating to the organization or layout of the site become
irrelevant.

2www.yahoo.com

4 CHAPTER 1. INTRODUCTION

The performance problems experienced on the Web can be further broken down into
four subcategories. These are connection problems, latency problems, delivery problems,
and rendering problems.

Connection Problems Connection problems are problems related to connecting to a
site. These problems manifest themselves as a long wait before a site is reached and
content can be transferred. Habib and Abrams [45] have found that connection problems
are usually due to delays in DNS queries. As explained later, users may also experience
connection problems due to inefficiencies in the HTTP and TCP protocol, as well as
network congestion or server overload.

Latency Problems Latency problems are those related to sending a request and receiv-
ing (the first part of) a reply. These manifest themselves as a long delay after a site is
reached but before content starts being transferred. Server load is generally responsible
for much of this delay [15, 4]. Network latency and network congestion also make a
significant contribution, especially when the server is not heavily loaded [45]. The effect
of server load is usually greater when pages must be generated (e.g., by CGI programs)
than when static pages are used.

Delivery Problems Delivery problems are those experienced when transferring the con-
tent, but after the connection has been established and the download started. They mani-
fest themselves as abnormally long or unstable downloads. File size and network capacity
(available bandwidth) play an important role in causing this delay. Bradford and Crovella
found that file transfer delays were heavily influenced by both congestion and packet loss
[15]. A higher network load was also found to cause a higher variability in the delay
experienced.

Rendering Problems Rendering problems are experienced after the actual content has
been received, but before the user can actually view it. This is generally caused by
slow and inefficient client-side software or extremely large or complex content data (e.g.
HTML pages with complex tables or large images). Allison et al. found that rendering
accounted for a large portion of the overall delay experienced by users [4]. Rendering
problems will not be further considered in this dissertation and are mentioned only for
completeness.

1.1.2 Scalability

The infrastructure developed for the WWW can also be used to create local-area Webs
called Intranets. An Intranet uses the same technologies as the WWW, but operates on
a LAN within a single organization. It usually does not suffer from the same level of
performance problems.

In an Intranet, the distance between the client and server is small. In many cases the
client and server are even on the same network, in other cases they are a few (generally

1.1. PROBLEMS WITH THE WEB 5

two to three) hops away from each other. Either way, the route between the two is short
and relatively free of obstacles such as gateways and heavily loaded routers. This means
that the network latency between the two is very low. Similarly, the bandwidth of the links
between the client and server in an Intranet is high (the bandwidth of local-area networks
currently ranges from 10 Mbit/s to 1 Gbit/s). This means, in general, that the connections
between client and server will remain uncongested. Also, clients on an Intranet access a
limited number of well-known servers, which means that DNS lookups when connecting
to a server are unnecessary. When they are necessary, the lookup is quick because it is
performed on a local name server. This, combined with the low latency of the network
connection, leads to low connection times for the client. Similarly, servers on an Intranet
have a limited and stable number of clients. This means that servers often have a pre-
dictable load and can be configured to manage that load. Combined with an uncongested
network and low latency this leads to low overall latency (i.e., the time to get the first byte
of contents). The high bandwidth and low server load also lead to fast content delivery.

In the wide-area case, on the other hand, clients and servers are much further apart.
This means that the route between a client and server is longer and more complex, in-
volving many network links connected by routers and gateways. This increases both the
latency of the route and the possibility of congestion on the route. Although wide-area
network links often have high bandwidths they are generally used by many more concur-
rent users than are local-area network links. This limits the bandwidth available for any
single user and aggravates congestion problems. Clients on the World Wide Web access
a wider variety of servers than those on an Intranet. Because they regularly come across
unknown servers, expensive DNS queries [28] are usually necessary before a connection
to a server can be established. This leads to longer initial connections times. Just as clients
have a wider variety of servers that they connect to, so do servers have a wide variety of
clients that connect to them. Because of this a server’s maximum load is difficult to pre-
dict and as such a server must be able to deal with a greater range of loads. WWW servers
must also deal with higher frequencies of requests than Intranet servers do. This leads to
lower performance of servers, which combined with the higher network latencies leads to
a higher overall latency. The lower server performance combined with lower bandwidth
also leads to longer delivery times.

The fact that the WWW does suffer from performance problems, while the local-area
Intranets do not, indicates a scalability problem in the Web infrastructure. According to
Neuman [71], the scale of a distributed system has three dimensions: geographical (the
distance between the nodes in the system), numerical (the number of users and objects
that are part of the system), and administrative (the number of organizations involved
in the system). A system’s scale has effects on its reliability, performance, and admin-
istrative complexity3. This dissertation will limit discussion to the effects of the Web’s
geographical and numerical scale on performance.

As such, there are two scalability problems faced by the Web. The first one is that the
infrastructure does not scale well with regards to the geographic distribution of clients.
The second is that it does not scale well with regards to the number of client requests

3A more formal definition of scalability in distributed systems is provided in [109].

6 CHAPTER 1. INTRODUCTION

processed. Thus, the infrastructure works well when clients are localized, and when the
number of requests is stable and minimized. However, as soon as clients become more
widespread, the number of requests increase, or the requests become highly unpredictable,
the performance levels drop.

1.2 Requirements for a Solution

Because the Web’s performance problems stem from the nonscalability of its infrastruc-
ture, a good solution to these problems will provide a scalable infrastructure. The effect of
a good solution will be to minimize connection time, latency, and delivery time. Besides
simply minimizing these factors, a good solution will make them virtually independent
of the geographic distribution of a Web site’s clients and of the Web site’s access pattern.
Being independent of the geographic distribution of clients means that, on average, all
clients will experience similar connection time, latency, and delivery time. There will
be little distinction between clients closer to or further away from the Web site’s server.
Similarly, being independent of the access pattern means that despite the server having to
handle more requests, all clients experience a similar high level of performance. Further-
more, the traffic and load caused by one site should preferably not affect the performance
of another, unrelated site (which currently does happen if the sites are hosted on the same
server). However, if the performance is affected (e.g., due to communication over com-
mon links), the effects should be minimized.

Some of the performance problems can be solved by applying more hardware, better
server software, and more network capacity. For example, the problem of latency can
often be solved by deploying a faster server and providing it with a higher capacity link
to the Internet. However, this is not a structural solution, and given enough new traffic,
the latency problems will return. The application of new hardware or better network
connectivity cannot, for example, prevent problems due to sudden, unexpected, increases
in the number of client requests received (e.g., flash crowds).

Similarly, some problems may be relieved by improving or fine-tuning the protocols
used (HTTP and TCP). For example, a modification to HTTP made in HTTP 1.1 allows
persistent connections [36]. This means that clients making multiple requests to the same
server can reuse an existing connection. Reusing existing connections improves perfor-
mance because the costs of creating new connections are avoided. Similarly, TCP has a
so-called slow start, where the packet size starts off small and is increased until an optimal
transfer rate is reached [100]. This works well for long-lived connections, however, for
the short-lived connections4, which are typical for the Web, this is inefficient and simply
increases the latency and delivery time. Eliminating the slow start, therefore, helps to
reduce latency and delivery times for HTTP [98]5. However, because these solutions are

4Although the connections used for downloading of large resources (such as software, music, and video) are
relatively long-lived, the majority of connections are used to transfer small resources (such as HTML pages,
icons, and small images) and are short-lived.

5Eliminating slow start provides minor performance benefits for typical HTTP traffic. However, for general
Internet traffic TCP slow start plays an important role in avoiding network congestion and improving general
performance. Eliminating slow start is, therefore, generally a bad idea.

1.2. REQUIREMENTS FOR A SOLUTION 7

not structural, increases in the number of requests handled will lead to increased network
traffic and server loads causing delays that eventually offset the gains provided by such
solutions.

A more effective solution is based on the observation made previously that the Web
infrastructure deployed in a local-area scenario (i.e., an Intranet) does not suffer from
the same performance problems as when it is deployed in a wide-area scenario (i.e., the
WWW). By decreasing the distance between client and server a solution that localizes
traffic can help reduce latency and delivery times. Likewise, a solution that reduces the
number of requests a single server has to process also reduces connection, latency, and
delivery times.

1.2.1 Replication

An effective method for achieving this localization of traffic and reduction of requests is
replication. Replication involves placing copies of the content (replicas) on other servers
in the Web. With multiple copies of the content available clients have a choice of servers
to send their requests to. Their decision is based on which server will offer the best perfor-
mance. Assuming that the servers themselves offer similar levels of performance, it is the
distance from the client that sets the servers apart. Requests are sent to the server closest
to the client. Not only does this spread the total load over multiple servers, relieving the
load at any single server, but, because clients send requests to their nearest server, the
distance between clients and their servers is shortened allowing for better performance.
An added benefit of replication is that it may improve the fault tolerance of a Web site. If
a Web site is replicated over multiple servers and one of the servers goes down the Web
site may still be reachable at one of the other servers. The number of replicas a Web site
needs depends on the distribution of its clients and the number of requests it receives.
How, when, and where replicas are created is determined by a replication policy.

Unfortunately, replication is not without its drawbacks. One of these drawbacks is
that all the replicas must be kept consistent with each other. That is, when any of the
replicas is modified they all have to be modified, otherwise they will be out of sync and
represent different content. Thus, in order to keep replicas consistent, the content must
be copied out to all the replicas whenever it is modified. There are numerous approaches
to copying modified data out to replicas. All the approaches can, however, be grouped
into one of two categories: those where modified content is pushed to the replicas, and
those where replicas pull in modified content when they notice that it has changed. There
are also different levels of consistency that can be offered. Weak levels of consistency
offer little in terms of guarantees about the consistency between the replicas. In this
case it may be possible that content received from one replica may differ from content
received from another. Stronger levels of consistency make stronger guarantees about
the consistency between replicas. The strongest form of consistency guarantees that all
replicas will always contain the same content. A coherence policy determines what level
of consistency is provided and how this level of consistency is achieved. Together, a
replication policy and a coherence policy form a distribution policy.

8 CHAPTER 1. INTRODUCTION

Replication has been used as the basis of many proposed solutions to the Web’s per-
formance problems. One of the most common approaches is caching. Caching involves
creating temporary local copies of content. After the first request (which is served from
the server and loads the cache) subsequent requests for the content are made to these lo-
cal copies, if possible. There are numerous mechanisms for keeping the cached content
consistent with the main copy. These range from checking with the server every time a re-
quest is made, to timeout-based mechanisms where after a specified time limit the content
is considered out of date and a new copy is to be fetched from the main server.

Another common approach employing replication is mirroring. Mirroring involves
hosting replicas of Web sites at other servers. Clients can request content either from the
main site or from a mirror site. Most methods for keeping mirrors consistent are manual,
that is, the content owner must make sure that updates are also made to the replicas.

A drawback of most proposed replication solutions is that their approach must be
applied universally to all Web content replicated using that solution. This means that
all Web resources have to be replicated in the same way and with the same coherence
policy applied to all of them. However, with the large variety of Web content currently
available it is questionable whether such an assumption is valid. For example, strong
consistency is very hard to achieve on a wide-area scale and is expensive (in terms of
communication between replicas) to implement. For some Web sites (e.g., a site that
provides real-time stock quotes) strong consistency is an absolute necessity and the price
of extra communication and complex protocols is worth paying. Other sites (such as a
conference Web site or a home page) may, however, be satisfied with weaker consistency
guarantees and would not be willing to pay the price for stronger consistency. It is not
acceptable that sites that do not require strong consistency have to implement it and pay
for it. Likewise, it is not acceptable that sites that do require stronger consistency cannot
get it.

We claim that in order to be scalable, the Web infrastructure not only needs to allow
content to be replicated, but it must be flexible enough to allow the replication and co-
herence policies used to be determined on a case-by-case basis. An appropriate solution
will, therefore, allow content to be replicated, but will not impose any specific distribution
policy (that is, a policy with regards to communication, replication, and consistency) on
Web sites.

1.2.2 Summary

To summarize the requirements, an appropriate, scalable, solution to the Web’s perfor-
mance problems will have the following effects on access to any Web site:

• Maximize performance by minimizing connection time, latency, and delivery time
experienced by clients

• Make the level of performance independent of geographic distribution of the Web
site’s clients

• Make the level of performance independent of the Web site’s access patterns

1.3. EXAMPLE 9

• Make the level of performance independent of any other Web site’s access patterns.

These effects are achieved by:

• Localizing traffic

• Limiting the number of requests handled by (and thus the load on) any single server

• Decoupling a Web site from the server providing its contents.

In order to achieve this, an infrastructure must:

• Allow content to be replicated

• Be flexible and not impose any single distribution policy on all Web sites.

1.3 Example

An example of a situation that is often the cause of extreme performance problems is a
flash crowd. A flash crowd is a rapid and unexpected surge in the popularity of a Web
site. It is caused when a site receives an unusually large number of requests, which causes
the Web server’s load to become unusually high (a three to four-fold load increase is not
uncommon). Despite their severity, flash crowds are relatively short lived; lasting between
a couple of hours and a couple of days.

The World Trade Center and Pentagon bombings on September 11, 2001 caused flash
crowds at many news Web sites. Shortly after the bombings started (and for the most part
of that day), major news sites (such as those of CNN, MSNBC, ABC, etc.) received so
much traffic that the loads on their servers became unbearable. CNN6, for example, had
to deal with 9 million page views per hour, as opposed to a normal load of 11 million
page views a day. The high loads caused performance to degenerate until most of the sites
were rendered unreachable. With the major news sites unavailable, those desiring news
about the unfolding events turned to the more numerous, but less prominent, news sites
such as Slashdot and Indymedia. Although this helped to spread the load out over more
sites, the load on each site was still much higher than normal. For example, Slashdot7 (a
site for mainly technical news, but which also covered the bombings), normally services
18 to 20 requests per second, whereas soon after the bombings its load went up to 40 to 50
requests per second. The problems experienced by most news sites were caused mainly by
overloaded Web servers and possibly congested network links at the servers, as opposed
to congestion problems on the Internet’s backbone networks.

The affected sites reacted in different ways to solve their problems, get back online,
and successfully handle the loads. One strategy taken by many pure news sites was to dras-
tically reduce the complexity of their Web sites. CNN, for example, provided a simple,
static, HTML page with no tables or frames, no advertising, and no unnecessary graphics;
just a list of links to the newest stories. The pages containing the stories themselves were

6http://www.cnn.com
7http://www.slashdot.org

10 CHAPTER 1. INTRODUCTION

also plain and simple containing only the text of the story and any relevant pictures. Such
stripped down Web sites allowed the servers to run more efficiently and process more
requests. Similarly, by removing any unnecessary content, the replies sent were much
smaller, meaning that many more replies could be sent before the network links would
become saturated. Other sites, such as MSNBC, also added extra Web servers to help
handle the loads. Besides actions taken by the news sites themselves, many ad-hoc mirror
sites all over the world were also created. These were sites on servers not affiliated with
the news sites but which, nevertheless, served copies of all the important stories.

Some news sites, however, provide more than simply the news. A site such as Slash-
dot also provides discussion forums were people discuss the news stories. For many such
sites, including Slashdot, these discussion forums are their main attraction. Because of
this, Slashdot could not simply reduce their site to a collection of static pages, updating
them only when new stories came in. Instead, its maintainers took an approach that was
better suited to their style of content. Besides tuning the software and databases used,
they also eliminated many of the seldom used or less relevant functions on their site.
Similarly, they switched from serving purely dynamic pages to a mixture of static and
dynamic pages. By studying their own usage logs the Slashdot maintainers realized that
only a fraction of their users use interactive features that affect their view of the Web
site.8 Based on this observation they decided that some of their servers would be con-
figured to serve only static versions of their pages (that is, pre-generated views of the
discussion forums and stories with the interactive features turned off) while the rest of the
servers would continue serving dynamic versions. This greatly reduced the load on their
database (generating dynamic pages requires database lookups, while serving static pages
does not), improving the overall database performance and allowing all of their servers to
process requests faster.

These examples highlight the need for a scalable Web infrastructure that can deal
with (expected or unexpected) increases in the number of client requests that a Web site
receives. They also illustrate that effective solutions can differ per site, and that what is
effective for one site may not be so for another. For example, it would not have been
appropriate to apply the CNN solution to Slashdot, as it would have rendered one of
the most important features of Slashdot useless. Moreover, the examples show that an
effective approach may not always remain effective for that same site. A day after the
bombings the flash crowds died away and the number of requests processed by the sites
had come down to an almost normal level. This allowed most sites to return to their
normal modes of operation. It would not have been effective for any of the sites to keep
operating with their flash crowd configurations (stripped down pages, decreased dynamic
content, etc.) when it was no longer necessary.

8The most important of these features are ones that allow users to post stories, change the amount and quality
of comments they see in the discussion forums, and filter out particular authors.

1.4. GLOBEDOC 11

1.4 GlobeDoc

The solution proposed in this dissertation is a scalable Web architecture called GlobeDoc
(Global Object Based Environment for Web Documents). GlobeDoc is an architecture
based on distributed shared objects (DSOs). DSOs are physically distributed objects,
meaning that their state is partitioned across multiple disjoint address spaces (which are
usually hosted on separate machines) at the same time. Clients of an object are unaware
of such a distribution: they see only the object interfaces available in their own address
spaces. Globe (Global Object Based Environment) [108] is an existing wide-area dis-
tributed system that provides support for DSOs. GlobeDoc is designed as a Globe appli-
cation and is based on Globe DSOs.

In Globe, each object fully encapsulates its own distribution policy. There is no
system-wide policy imposing how an object’s state should be distributed and kept consis-
tent. Moreover, clients need not be aware of the details of the distribution policy applied
by an object. A Globe object is therefore free to take any possible approach to replication.
It can, for example, decide not to create any replicas at all, or it can create replicas and
offer a best effort consistency guarantee. An object is even free to dynamically create and
destroy replicas as it sees fit. Globe is location transparent, in that clients do not know
where a Globe object and its replicas are hosted. A client wishing to use a Globe object
will be automatically connected to the replica closest to it. Globe provides both a DSO
model and a framework that offers support for using, creating and hosting Globe DSOs.

Conceptually, a GlobeDoc object is a distributed shared object that contains a Web
document, which is a collection of logically related Web pages. Each such page may
consist of text, icons, images, sounds, animations, etc., and may also contain applets,
scripts and other forms of executable code. Each of these parts is referred to as an element.
A GlobeDoc object allows clients to add, remove, access and modify its elements. In the
GlobeDoc model a Web site consists of a collection of GlobeDoc objects.

The main reasons for basing GlobeDoc on Globe is that the Globe infrastructure en-
courages replication of content and makes this replication transparent. Similarly, Globe
allows each object to have its own associated distribution policy. This makes it possible
to determine and implement an optimal policy for each individual Web document.

The fact that GlobeDoc content can be replicated means that a GlobeDoc object’s total
load will be spread out over its replicas. Likewise, the traffic at each replica will have a
more local character (i.e., the distance to clients will be smaller). As stated earlier, this
has positive effects on reducing the connection times, latency, and delivery times for Web
documents. Similarly, the fact that new replicas can be added and removed means that
it is possible for a GlobeDoc object to adapt its replication based on its current situation.
For example, if the number of requests dramatically increases a GlobeDoc object may
create new replicas to help handle the load. Similarly, a GlobeDoc object may create
new replicas placed closer to a large group of clients to reduce the distance between the
clients and itself, thus localizing the traffic. This adaptability makes it possible for the
performance of a GlobeDoc object to be independent of the geographic distribution of
clients and the number of requests they generate.

12 CHAPTER 1. INTRODUCTION

GlobeDoc objects are also independent of each other. Replicas of different GlobeDoc
objects may be colocated on one machine, however this is not necessary. Thus, for ex-
ample, if a popular GlobeDoc object (replica) causes a high load on a machine, replicas
of other GlobeDoc objects being hosted on that machine can be moved to less loaded
machines. Because of Globe’s location transparency, (potential) clients do not have to be
informed of this move.

1.5 Contributions

The main contributions of this dissertation towards solving the Web’s scalability problems
are as follows.

• It shows that in order to solve many of the Web’s performance problems it is neces-
sary to replicate much of the available content. However, besides simply replicating
the content using a single policy for every document, optimizing performance re-
quires applying different distribution policies on a per-document basis (Chapter 2).

• It presents GlobeDoc, a Web architecture based on Globe distributed shared ob-
jects. GlobeDoc allows distribution policies to be assigned to Web documents on a
per-document basis. In order to make it practical to use GlobeDoc, a way to seam-
lessly incorporate GlobeDoc into the existing Web infrastructure is also presented
(Chapters 3 and 4).

• It presents the design of a distributed resource management service. This service is
used by GlobeDoc for local administrative purposes as well as to aid in the placing
and distribution of replicas (Chapter 5).

• It presents an approach to profiling the performance of components in a (wide-area)
distributed system like GlobeDoc (Chapter 6).

• Discussion of the design and implementation of GlobeDoc provides insight into
building a scalable wide-area distributed application. Also, because GlobeDoc is
based on Globe, this provides insight into building applications using Globe and
DSOs in general.

1.6 Outline

The rest of this dissertation is structured as follows. Chapter 2 reviews currently imple-
mented and proposed solutions to the performance problems faced by the World Wide
Web and discusses how and why they fail to effectively solve these problems. Chapter 3
presents a system view of the solution proposed in this dissertation. Chapter 4 presents a
detailed design of GlobeDoc and Chapter 5 presents a detailed design of the Globe Infras-
tructure Directory Service, both forming key elements of the proposed solution. Perfor-
mance experiments and results are presented in Chapter 6, and conclusions are presented
in Chapter 7.

Chapter 2

Current Solutions

Many attempts have been made to solve the performance problems of the World Wide
Web. Because of the growing importance of the Web the problems have been tackled both
in academia and in industry.1 This has resulted in a wide variety of both experimental and
commercial solutions, many of which have been widely deployed throughout the Web.

The available solutions can be divided into three categories. The first category con-
tains solutions that aim to improve performance and accessibility of Web content for
clients. Examples of these include browser and proxy caching. The second category
contains solutions that are applied at the server-side with the aim of reducing the load on
individual servers and improving general server performance. Server caches and server
clustering are examples of these solutions. Finally, the third category contains solutions
based on replication. They aim to improve both client and server performance by moving
content closer to clients, reducing the load on individual servers, and reducing usage of
network resources. This category includes technologies such as mirroring and content
delivery networks. Each of these categories will be discussed in turn.

2.1 Client-Oriented Solutions

Client-oriented solutions are implemented at (or close to) the clients with the intention
of speeding up client access to Web sites and Web resources. Caching is the main tech-
nique used for client-oriented solutions. Caching involves creating temporary copies of
previously accessed Web resources and using these to fulfill subsequent requests for those
resources.

By placing copies close to clients, much wide-area network traffic can be avoided,
reducing both network-induced access delays and network congestion. By limiting net-
work congestion, requests for noncached Web resources also benefit because they can be

1When referring to industry, besides commercial entities I also refer to noncommercial open-source projects.
Similarly, when referring to commercial products and solutions I also refer to (possibly noncommercial) open-
source products and solutions.

13

14 CHAPTER 2. CURRENT SOLUTIONS

sent faster on noncongested networks. Also, because requests for resources whose home
servers are unavailable can often be fulfilled by a cache, caches can help to increase the
robustness of the Web.

2.1.1 Cache Architectures

Caches come in several flavors. Browser caches are the simplest type of cache. They are
followed in complexity by proxy caches, which introduce the idea of shared caches. Proxy
caches can be extended to either hierarchical or distributed caches. Finally hierarchical
and distributed caches can be combined to form hybrid caches.

Browser Caches

A browser cache is the simplest form of Web cache. As the name suggests it is maintained
by a client’s Web browser. A caching browser simply stores copies of previously accessed
Web resources in its local file system. Subsequent requests for cached resources are ful-
filled using the locally stored copies, preventing extra wide-area communication between
clients and servers. Figure 2.1 shows a user requesting a Web page through a browser
cache. Rather than sending the request over the network to the server, the browser simply
returns its cached copy of the requested page. Most major Web browsers support browser
caches.

Web ServerBrowser

cache

Internet

Figure 2.1: Requesting a Web page using a browser cache.

One of the potential drawbacks of browser caches, however, is that the cache contents
are not shared between users. This means that if different users in the same organization
access the same resources, copies of those resources are stored in all of their browser
caches. Not only is this a waste of local disk space, but it can also cause extra wide-area
network traffic. When caches are not shared, a user requesting a resource for the first time
must always fetch that resource from the home server even though multiple local copies
may already be present locally (in other browser caches). By sharing caches, these extra
requests can be avoided.

2.1. CLIENT-ORIENTED SOLUTIONS 15

Proxy Caches

Proxy caching [63] allows cached Web resources to be shared by multiple clients and is a
solution to the sharing problem. Proxy caches are shared caches stored on and maintained
by proxy servers. Figure 2.2 shows a client requesting a Web page through a proxy cache.
The proxy server intercepts the client’s HTTP request and attempts to fulfill it using re-
sources stored in its local cache. If a request can be fulfilled locally then the cached copy
is immediately returned to the client. Otherwise, the proxy server retrieves the resource
from its home server and returns that to the client, simultaneously storing a copy in its lo-
cal cache. Subsequent requests (possibly from other clients) for that resource will receive
the cached copy as a reply.

Web Server

C

Proxy Server

cache

Internet

Figure 2.2: Requesting a Web page through a proxy cache.

Proxy caches are generally positioned at the edges of the network, that is, close to the
clients that they serve. They are often deployed at an organizational or departmental level,
meaning that users within the same organization or department share the same cache.
Because proxy caches act as a gateway to the Web, an important issue when designing
proxy caches is that the cost of a cache miss should be minimized. In other words, the
presence of a proxy cache should not cause a dramatic increase in access latency for cache
misses.

Although proxy caches do prevent much wide-area network traffic and do speed up
access to many Web resources, they also have some drawbacks. A badly configured, or
under-powered proxy server can become a major bottleneck. If, for example, a proxy
server receives more requests than it can handle, its performance can degrade rapidly.
Because a proxy server intercepts all Web requests, all requests will be delayed due to
the server’s bad performance. Similarly, the proxy server forms a potential single point of
failure. If a proxy goes down, all of its clients may be cut off from the Web.

There are numerous proxy caching solutions in wide use. These include both hardware
and software solutions. Many of the proxy servers used today support a wide variety of
features besides caching. Examples of extra features include the possibility of forming
part of a hierarchical or distributed cache, authentication, firewall services, and content
filtering.

16 CHAPTER 2. CURRENT SOLUTIONS

Hierarchical Caches

On a cache miss, a proxy cache must directly contact the requested resource’s home server.
This requires wide-area network communication and is a potential source of performance
problems. Hierarchical caches were introduced by the Harvest project [24, 18] in an
attempt to avoid this extra communication. In hierarchical caching, cache servers are
arranged in a tree-like hierarchy at multiple levels of the network.

Figure 2.3 shows a client requesting a Web page through a hierarchical cache. At
the lowest level of the hierarchy the servers are similar to the proxy servers described
above. They intercept requests (step 1) and attempt to fulfill them using cached resources.
However, if a server cannot fulfill a request using cached resources, instead of going
directly to the resource’s home server it passes the request on to a cache server in a layer
above it (step 2). This server attempts to find the requested resource in its local cache,
returning it on success or otherwise passing the request on to a server above it. This
process continues until either the request is fulfilled by one of the cache servers, or the
root of the hierarchy is reached and the request is forwarded to the resource’s home server
(step 3). When a resource is found (either in a cache or retrieved from its home server) it
is passed back down the hierarchy to the client (steps 4, 5, and 6), being stored locally by
every cache server it passes through.

Web Server

Cache Server
C

Cache Server

Cache Server
1

5

2

3

4

6

Figure 2.3: Requesting a Web page through a hierarchical cache.

2.1. CLIENT-ORIENTED SOLUTIONS 17

Because popular pages are efficiently disseminated towards the locations that need
them, hierarchical caches are potentially more bandwidth efficient than simple proxy
caches. They are, however, not without their problems. Due to their multilayered ar-
chitecture hierarchical caches can introduce significant delays to requests. For example,
research has shown that hierarchical caches become inefficient when the number of lev-
els used is greater than four [8]. Also, due to the tree-like nature, high-level servers can
become heavily loaded by propagated client requests turning them into bottlenecks. The
higher-level nodes are, therefore, often implemented as clusters of servers rather than sin-
gle servers. There is also an additional cost for storage because keeping copies of Web
resources at intermediary levels may introduce a high degree of redundancy. Finally, set-
ting up a cache hierarchy requires placing nodes at key access points in the network. This
requires significant coordination among all participating parties.

Despite these problems, hierarchical caching is still widely used. Currently many
software caches such as Squid [114] and Netscape Proxy Server [70] support hierarchical
caching. Similarly, most hardware caches,2 such as Cisco Content Engine [25] also offer
hierarchical caching facilities.

Distributed Caches

A different extension of the proxy caching idea is to create a single level distributed
cache [103, 85]. In this architecture all the cache servers are peers, there is no hierarchy.
Figure 2.4 shows a client requesting a Web page through a distributed cache. On a cache
miss the cache server contacts one of the other cache servers to ask for the resource (step
2). Similar to hierarchical caching, as results are propagated back to the client, inter-
mediate servers store copies in their caches (steps 3 and 4). The servers keep meta-data
about the contents of their peers and use this meta-data to decide whom to contact on a
cache miss. Distributed caches generally offer an improvement over hierarchical caching
because they provide better performance, do not waste as many disk resources, are more
robust, and allow for better load balancing.

There are a number of varying approaches to distributed caches, the main difference
being the protocols used for routing the requests to peer servers. Inter Cache Protocol
(ICP) [114] was designed by the Harvest group for use in hierarchical caching. It allows
a cache server to query other servers to determine where a requested resource can be
found. Another approach, the Cache Array Routing Protocol (CARP) [105], uses hashing
to determine which cache contains a desired resource. CARP hashes URLs to particular
servers, thus instead of communicating with other nodes to determine where a resource is
located, as in ICP, a server using CARP knows which node to contact based on the hash
of the resource’s URL. Another approach replaces the upper-level nodes of a hierarchical
cache with directory servers [85]. This way, instead of holding copies of resources, upper
level nodes simply inform servers where a resource can be found. Cache digests [91] help
to reduce inter-cache communication by storing information about peer caches at each
server. This way, on a cache miss, a server simply performs a local lookup to find out

2A hardware cache is a computer designed to function as a cache and sold with caching software included.

18 CHAPTER 2. CURRENT SOLUTIONS

Web Server

Cache Server Cache Server

C

Cache Server

2

3

4

1

Figure 2.4: Requesting a Web page through a distributed cache.

2.1. CLIENT-ORIENTED SOLUTIONS 19

where the resource is cached. Finally, there is also a central directory approach where
information about a group of caches is stored in a central directory [102].

A major drawback of many distributed caching systems is that forwarding requests
to peers may actually be slower than going straight to a resource’s home server. The
performance gained from using distributed caches is highly dependent on the distance
between and the performance of other peer cache servers.

Hybrid Caches

The final approach, hybrid caching, combines both hierarchical and distributed caching.
In this approach caches can forward requests to peers or parents, depending on who offers
the best performance. The techniques used are a combination of those from hierarchical
and distributed caching. Many hierarchical caches currently act as hybrid caches, for
example, in Squid the document is fetched from the parent or neighbor that has the lowest
RTT [114]. This allows for improved performance without many of the drawbacks of
purely hierarchical or distributed systems.

Peer-to-Peer Caches

A relatively new approach to caching in the Web is based on peer-to-peer (P2P) tech-
nologies. These are technologies in which end users create distributed services by sharing
each others resources, rather than requiring special purpose, or dedicated, servers (such
as caching servers or proxies). The Squirrel project [51], for example, applies P2P tech-
nology to allow Web browsers to access each others local caches, creating a shared cache
network. In Squirrel, browsers use Pastry [93] (a P2P routing protocol) to identify and
route to nodes that cache copies of requested resources. The performance of this approach
has been found to be comparable to a traditional Web cache solution, without requiring
any dedicated caching servers. Note that Squirrel has been designed to work in a small
scale environment (such as a LAN). It is unclear whether it would scale to a wide-area
environment.

2.1.2 Design Issues

Besides the various cache architectures available, there are a number of architecture-
independent issues that affect how caches are designed and deployed.

Cache Coherence

The most important of these issues is cache coherence. Caches contain copies of Web
resources and in order to be useful the copies they serve should be fresh (i.e., up-to-date).
This means that, ideally, when the original Web resource is changed, clients accessing
it through a cache should receive the changed, and not the old (or stale), version. The
cache coherence problem is similar to the coherence problem in distributed file systems
and many of the cache coherency solutions stem from distributed file system research.

20 CHAPTER 2. CURRENT SOLUTIONS

Most cache coherency techniques are based on validation checks that verify the fresh-
ness of a cached resource. Validation checks are performed using conditional GET mes-
sages: HTTP GET requests that have the If-Modified-Since header set. These messages tell
the server to return the resource if it has been modified since the given time, and otherwise
return a confirmation of the resource’s freshness.

Check-Every-Time, the simplest coherency technique, queries the home server every
time a cached resource is requested. This guarantees up-to-date data (if the server is
reachable), however, it also causes extra network traffic and higher server loads which
can lead to significant delays. Client Polling, a less traffic-intensive technique, requires
caches to periodically compare a time stamp on the cached copy of a Web resource to the
time stamp of the resource at its home server. If it finds that the cached copy is stale then
the copy is removed from the cache. Polling does not guarantee that cached copies are
always up-to-date. Choosing the right polling interval is, therefore, essential for providing
reasonably fresh cached resources.

Callback techniques, or invalidation, require a resource’s originating server to keep
track of where the resources is cached. When the resource is modified on its home server
invalidation messages are sent to each of its cached copies. Although using callbacks
ensures that cached copies are kept up-to-date while limiting the bandwidth used, the
fact that the originating server has to keep track of and contact all the caches, makes it a
nonscalable solution.

Expiration-based coherence techniques rely on assigning an expiration time to Web
resources. Requests for resources that have not expired are served from the cache, while
requests for expired resources cause the cache to first check with the home server whether
the cached copy is still fresh or not before serving the cached copy or retrieving a fresh
copy from the home server. The expiration time is usually set as a time-to-live, and
is proportional to the amount of time since the resource was last modified. Adaptive
techniques modify the time-to-live every time that a cache hit occurs. A popular metric for
setting this time-to-live value comes from the Alex file system [23] and is set to one-tenth
of the time between when the file was last fetched and the file’s creation or modification
date (this is generally measured in hours or days).

Check-every-time and callback-based techniques offer the strongest consistency fol-
lowed closely by adaptive expiration-based techniques. Polling and nonadaptive expira-
tion based techniques offer weaker consistency. Cao and Liu [21] found that supporting
strong consistency rather than weak consistency does not necessarily result in increased
network bandwidth usage. Other studies, however, show that supporting strong consis-
tency does in fact result in increased network bandwidth use [44]. The difference in
results can be attributed to the different workloads and metrics used in each of the studies.

Cache Replacement

Another important issue is cache replacement. Caches have practical limits on the
amount of space available for storing resources. Often, however, the amount of data that
a cache needs to store is larger than the available space, requiring unused cache entries to
be replaced with new ones. Cache replacement is concerned with deciding which entries

2.1. CLIENT-ORIENTED SOLUTIONS 21

to replace when new ones must be added. A key requirement for a cache replacement
policy is that the cache retains a high hit ratio, that is, that the entries that are least likely
to be used are the ones that are replaced.

There are several cache replacement algorithms [115, 2]. They are categorized based
on the replacement policy that they implement. The first category includes the traditional
replacement policies of Least Recently Used (LRU), Least Frequently Used (LFU), First
in First Out (FIFO) and their direct extensions. The second category consists of key-based
algorithms, which are based on policies that evict resources using a primary key (using
secondary and tertiary keys to break ties). Examples of key-based policies include the
SIZE policy, which uses a Web resource’s size as the primary key (the largest resource
being evicted first) and time since last access as the secondary key. HYPER-G [7] uses
frequency of access as a primary key, with time since last access as a secondary and size
as a tertiary key. Finally, the third category, cost-based policies, combines a number of
different factors in a cost function to determine which resources to evict. Factors used
in the cost function include time since last access, entry time of resource in the cache,
expiration time, transfer time cost, etc. Many cost functions incorporating these various
factors in different ways have been proposed. For example, the Least Normalized Cost
Replacement (LNC-R) [96] policy incorporates the access frequency, transfer time and
the size, while the Server-assisted policy uses a resource’s fetching cost, size, and next
request time [29].

The effectiveness of cache replacement is highly dependent on the Web access pat-
terns. For example, the SIZE policy works well in situations where smaller resources are
accessed often, however it is not optimal in the opposite situation as the most highly ac-
cessed resources are also the once replaced most often. Despite the variety and number of
different policies, currently no single policy performs optimally for all access patterns.

Prefetching

An important issue, aimed at improving the hit ratio of caches is prefetching. Research
shows that caches reach a maximal hit ratio of only 50% [1]. Prefetching is the practice
of anticipating future client requests and caching copies of the relevant Web resources
before they are actually accessed. There are three types of prefetching: between clients
and servers, between clients and proxies, and between proxies and servers. Prefetching
algorithms can use locally collected information, such as request patterns at the client or
proxy, or information collected at the server, such as a resource’s access history, to decide
what to prefetch.

Studies [75, 17] show that prefetching directly from the server can be effective and
significantly decreases client latency. The prefetching comes at a price, however, and
increases both the amount of network traffic and the burstiness of the traffic, which leads
to increased general network delays. Prefetching between proxies and servers has also
been found to reduce client latency. Pushing content from servers to proxy caches has
also been suggested, however, this requires cooperation from the servers. Prefetching
between clients and proxies shows promising results in reducing the client latency. In this

22 CHAPTER 2. CURRENT SOLUTIONS

scenario the proxies predict which documents the users might be interested in and push
these out to the client during periods of idle network activity.

Dynamic Content

A currently unsolved, yet increasingly important issue in caching is how to handle dy-
namically generated content. Active caching [22] attempts to address this problem by
introducing applets in the cache that can customize Web documents. Servers provide par-
tially generated documents and applets that can be cached. When these documents are
accessed from the cache, the applet locally (on the cache server) generates the missing
content and returns the completed document.

Although active caching allows some dynamic content to be cached, it does not solve
the problem for all types of dynamic content. Content that is generated based on a
database, for example, must still be generated at the server, as the databases are usually
centrally located at the servers.

Other issues

An important issue to content providers is accounting for client accesses through caches.
For many providers it is important to know how many customers have accessed their
pages. For example, if a page has advertisements on it, the content provider needs to know
how many clients accessed the page so that the advertiser can be charged appropriately.
If a client accesses the page through a cache, the content provider will not see the access,
and lose revenue. Many caches, therefore, include some sort of accounting functionality.

2.2 Server-Side Solutions

Server-side solutions are applied at the server-side with the aim of reducing load and
improving performance and accessibility of individual Web servers. As opposed to the
client-side solutions, which aim to improve access performance of clients to all Web sites,
server-side solutions improve access only to the Web sites served by particular servers.
There are three main approaches to server-side solutions. The first is upgrading and im-
proving the hardware and software used, the second is server caching, and the third is
server clustering.

Upgrading Web server hardware is the most obvious approach to improving Web
server performance. Adding more and faster processors, increasing available memory,
adding larger capacity disks, etc. can all help to improve the performance of a Web server
and prevent server overloading. Like hardware improvements, software changes to the
operating system and Web server can also help improve performance. Such software im-
provements include tuning operating parameters, rewriting and redesigning critical code,
optimizing operating system code, and moving core Web server functionality into the
kernel.

One problem with simply replacing hardware is that it is expensive and does not take
full advantage of previous hardware investments. Moreover it is a short term solution

2.2. SERVER-SIDE SOLUTIONS 23

that does not scale well with regards to growing site popularity (i.e., as the site grows
more popular, hardware must constantly be replaced). A long term solution should be
incrementally scalable, that is, it should be able to grow as needed.

Another technique that helps ease the load on servers is server caching. Server
caching involves caching popular resources either in a Web server’s main memory or on
a separate machine so that they can be retrieved more quickly and without unduly loading
the Web server. When implemented outside a Web server, server caches often perform
other CPU-bound tasks (such as SSL processing) to further ease the Web server’s load.
Server caches help to decrease server load, increase the rate of request processing, and
decrease response time. Besides the benefits, however, server caching also faces many of
the issues and problems involved with caching as described above. It is an appropriate
technique for servers where a large portion of their most popular (static) resources receive
most of requests. For servers whose content is highly dynamic or whose requests are more
evenly distributed they provide less benefit.

2.2.1 Server clustering

Server clustering involves having a pool of servers act as a single Web server when
receiving and processing requests. A clustering solution provides incremental scalability,
because extra servers can be added to the pool as needed.

Server clusters must be transparent to clients, that is, clients must always see a server
cluster as a single server. Clustering is, however, not always transparent to the Web servers
themselves. In some clustering solutions the servers must run specialized software to take
part in a cluster. The main drawback of this approach is that the servers cannot run com-
modity Web servers, which may greatly limit the kinds of content that can be served (for
example, if the specialized software does not support PHP or JSP, then content providers
cannot use these technologies to create their pages). When clustering is transparent to
Web servers, regular commodity Web server software can be run on the servers. Although
the former approach allows a much greater degree of optimization and therefore perfor-
mance gains, the latter approach allows a much broader base of Web server technologies
to be supported and is more cost effective (because commodity software is usually less
expensive than specialized software).

The general architecture of a clustering solution consists of a dispatcher and any
number of servers in a server pool. The dispatcher receives all HTTP requests for the
cluster and dispatches the requests to individual servers in the pool. The requests are
dispatched based on load balancing and distribution algorithms implemented by the dis-
patcher. There are three categories of clustering architectures, the major differences being
the logical layers in a protocol stack at which requests are intercepted and dispatched to
the servers in the pool. This dispatching can be done at the data link layer (OSI layer 2),
the network layer (OSI layer 3), and the application layer (OSI layer 7).

24 CHAPTER 2. CURRENT SOLUTIONS

Layer 2 clustering

Layer 2 clustering, also called L4/2 clustering because the dispatcher switches on the OSI
layer 4 (i.e., TCP) data and forwards packets at layer 2, is one of the more efficient Web
server clustering architectures. In this architecture the dispatcher shares the same network
layer (layer 3) address with all the servers. In practice this means that the dispatcher and
servers all share the same IP address. Figure 2.5 shows a request being dispatched by a
layer 2 dispatcher. When a request comes in to the dispatcher, the dispatcher chooses a
server for the request (step 2), rewrites the layer 2 information of that packet and forwards
the request to the chosen server’s layer 2 (MAC) address (step 3). The dispatcher chooses
a server based on the incoming packet’s TCP data. For example, if the incoming packet is
a TCP connection initiation, the dispatcher chooses a server, forwards the packet to that
server, and remembers that packets relating to that connection should always be forwarded
to that server. When the server receives the request, it processes it and returns a reply (step
4) directly to the client (this is possible because the server has the same IP address as the
dispatcher).

Web Server

Web Server

Dispatcher

Web Server

C

2
31

4

Figure 2.5: Requesting a Web page from a layer 2 server cluster.

Layer 2 clustering is efficient because the dispatcher has very little overhead (for ex-
ample, because it changes a packet’s layer 2 data it does not have to recompute an IP
checksum) and does not have to forward or process replies. One restriction on layer 2
clustering is that the dispatcher and servers must be on the same physical network. Ex-
amples of systems implementing layer 2 clustering systems include ONE-IP [31] and
LSMAC [40].

2.2. SERVER-SIDE SOLUTIONS 25

Layer 3 clustering

Layer 3 clustering, also called L4/3 clustering because the dispatcher switches on the
OSI layer 4 data and forwards packets at layer 3, was one of the first Web server clustering
architectures experimented with. In this architecture the dispatcher and all the servers have
unique IP addresses. The dispatcher acts as a gateway for the servers. Figure 2.6 shows a
request being dispatched by a layer 3 dispatcher. When a request comes in the dispatcher
analyzes it and chooses a server to forward it to (step 2). Once again the decision of where
to forward a request is made based on TCP (i.e., layer 4) data. A packet is forwarded by
rewriting the layer 3 (IP) address to that of the chosen server and sending it on to that
server (step 3). Note that by changing the IP address in the packet, the dispatcher has
to recompute all packet checksums. When a server receives a packet, it processes it and
returns a reply to the dispatcher (step 4). Upon receiving a reply the dispatcher resets the
packet’s source address to its own address and sends it on to the client (step 5).

Web Server

Web Server

Dispatcher

Web Server

C

2

3

4

5

1

Figure 2.6: Requesting a Web page from a layer 3 server cluster.

Layer 3 clustering is less efficient than layer 2 clustering because the dispatcher not
only has to process incoming and outgoing messages, but the modification of packets is
more expensive as it involves the recomputing of checksums. Layer 3 clustering is, how-
ever, easier to set up on commodity hardware/software. Examples of layer 3 clustering
solutions include Magicrouter [6], LocalDirector [26] and LSNAT [41].

Layer 7 clustering

In layer 7 clustering (also known as content-based clustering) the dispatcher switches
on the application level (i.e., HTTP) data. Unlike the previous two types of clustering

26 CHAPTER 2. CURRENT SOLUTIONS

Dispatcher

Web Server

Web Server

Web Server

C
1

32

4

HTML
pages

Images

Figure 2.7: Requesting Web resources from a layer 7 clustered server.

where the dispatchers inspect individual network packets, in layer 7 clustering the dis-
patcher inspects whole HTTP requests. The requests are forwarded to servers depending
on the content of the request. Figure 2.7 shows how a layer 7 dispatcher dispatches re-
quests to different servers depending on the resource being requested. Examples of layer
7 clustering solutions include LARD [76] and IBM Web Accelerator [61].

In LARD, each server in the pool is designated to handle a particular class of resources
(e.g., HTML pages, images, etc.). As requests come in, the dispatcher classifies the re-
quest and forwards it to a server handling that class of resources. Requests are forwarded
to servers using TCP handoff, a technique similar to the IP rewriting done in Layer 3
clustering. Unlike layer 3 clustering, however, in order to inspect the HTTP content the
dispatcher must first establish a connection with the client, then hand the established con-
nection off to a server. TCP handoff requires modified protocol stacks on the dispatcher
and servers.

IBM’s Web Accelerator takes a different approach and combines layer 7 switching and
server caching with layer 2 packet forwarding. In this approach the dispatcher combines
a caching and dispatching functionality. When an HTTP request arrives, the dispatcher
tries to fulfill it from its cache. If the requested resource is not in the cache, the request is
dispatched to a server using layer 2 clustering techniques.

The main benefit of layer 7 solutions is that it makes it possible to have specialized
server nodes. For example, it is possible to assign a very powerful machine to process
requests for dynamically generated pages, while a less powerful machine processes simple
static requests. A drawback of this type of clustering, however, is that the dispatcher must
analyze and process all incoming and outgoing requests. Nevertheless, when combined

2.3. REPLICATION-BASED SOLUTIONS 27

with server caches, layer 7 clusters are capable of providing the best performance of all
three architectures [97]. In fact, the best layer 7 dispatchers are capable of saturating
typical wide-area network links. This development has helped shift the Web performance
bottleneck from the ability of Web servers to serve content, to the ability of the networks
to deliver content to clients.

Design Issues

Despite the differences among these three categories of clustering solutions there are num-
ber of common issues that all clustering architectures must address.

The most important issues are request distribution and load balancing. When a
request arrives at the dispatcher, the dispatcher must decide to which server the request
will be forwarded. Requests should be sent out in such a way that all the servers are
evenly loaded. The simplest strategies are random distribution and round-robin. Other
strategies choose the least loaded server, or the server with the fastest response time. Layer
7 dispatchers often base their decisions on the type of resource requested. With regards
to request distribution, transparency is also an important issue. As mentioned earlier,
server clusters must be transparent, that is, a client must always see a server cluster as a
single server.

An important practical issue for clustering systems is fault tolerance. Some systems
provide a hot spare to take over if anything should happen to the dispatcher. Others allow
one of the servers to become a new dispatcher. Similarly, dispatchers must deal with
unavailable servers by not forwarding requests to them. However, they must also be able
to start forwarding to them when the servers come back up and join the pool.

Dispatchers are the most likely bottlenecks in clusters, thus it is important to make
sure that they can handle the load. Unlike the servers in a pool, if a dispatcher becomes
overloaded it is not possible to simply add another dispatcher, it must be replaced with a
more powerful one. As with server caches, dispatchers may also perform other functions
such as being a firewall for the clustered Web servers, performing SSL processing and
offering support for other application protocols such as FTP.

2.3 Replication-based Solutions

Between client-oriented and server-side solutions lie replication-based solutions. Rep-
lication-based solutions involve creating (semi) permanent copies of a Web site’s con-
tents on remote servers and redirecting clients requests to those servers. The goals of
replication-based solutions are to improve both client and server performance. Client
performance is improved when clients access content from servers closer to them, while
servers benefit when a significant part of the load is handled by other machines. Unlike
caching, where resource copies are created on behalf of the clients, in replication repli-
cas are created on behalf of the server. Unlike clustering, though, where the servers are

28 CHAPTER 2. CURRENT SOLUTIONS

close together (both geographically and network topologically3) servers hosting replicas
are usually spread widely over the Internet.

2.3.1 Replication Issues

Replication solutions face many of the same issues as caching and clustering solutions.
As in caching, one of the most important issues in replication is coherence. Replicas
of Web sites must be kept consistent with the main site. Unlike caching, however, there
is not necessarily only one master copy of every resource. Depending on the policy of
the site maintainer(s), changes can possibly be made at multiple replica servers. Further-
more, it is often possible for all the replicas to know about each other allowing coherence
policies based on callbacks or invalidations to be used. The coherency problem faced in
replication is very similar to that faced in distributed file systems and many solutions can
be directly applied to replicated Web sites. One important difference between distributed
file system research and Web replication, however, is that the distances (in terms of net-
work topological and geographic distance) on the Web are often much greater, requiring
solutions to scale over a large area.

Three other important issues in replication are transparency, routing, and load balanc-
ing. Transparency and load balancing are similar to the equivalent issues in clustering:
how to transparently redirect a client to the appropriate replica, and how to make sure
that the load is evenly distributed over the available replicas. Routing (directing clients
to the proper replica) is more difficult in the context of replication than in clustering be-
cause of the larger (geographic and network) scale involved. Not only is it necessary to
route clients to a replica that contains the content that they want, but it is also important
to route clients to replicas that are closest to them, so as to decrease latency and avoid
unnecessary bandwidth use. Similarly, many of the low-level techniques applied to make
server clustering transparent cannot be applied in wide-area networks. For example, it is
not possible to simply rewrite MAC addresses when the servers are not on the same local
area network.

As mentioned in the context of caching, dynamic content is playing an ever greater
role in the Web. Like caching, replication, of dynamic content poses a great problem. One
advantage that replication might have over caching is that replica servers are largely under
the content provider’s control. This makes it possible for all content (including databases)
to be replicated so that dynamic content can be created on-the-fly at replicas as well as at
the master site. Unfortunately, due to coherence issues, doing so presents problems of its
own.

Heterogeneity can also have an important effect on replication. In many situations
replicas are hosted on different kinds of servers with different capacities. Taking differ-
ent characteristics of host platforms into account can further complicate the problem of
routing client requests and balancing the load over all replicas. For example, a server
with a low bandwidth network connection will be able to handle fewer requests than one
with a higher bandwidth connection. This must be taken into account when routing client

3Note that host proximity in terms of network topology does not imply geographical proximity. For example,
all of a company’s offices worldwide may be network topologically but not geographically close.

2.3. REPLICATION-BASED SOLUTIONS 29

requests to these servers. Similarly, different operating platforms can affect how dynami-
cally generated data is replicated. For example, if the code used to dynamically generate
content relies on libraries available only on Windows platforms, then that code cannot be
replicated on Unix based servers.

Finally, as in clustering, fault tolerance is an important issue in replication. Despite
the fact that replication can improve the fault tolerance of a Web site (i.e., it takes more
than one server crash or localized network outage to bring a site down), the replication
mechanism must be able to deal with unavailable replica servers. Thus, for example,
client requests must not be routed to nonavailable servers.

2.3.2 Mirroring

The simplest form of replication on the Web is mirroring. Mirroring involves creating
a copy of a site on a remote server and informing clients about the server. There is no
formal (nor informal, but widely implemented) method or protocol for mirroring, making
it an ad-hoc solution. The simplest and most common approach to mirroring is to create
copies of a Web site on multiple servers, include a list of references to these servers at
the main site, and ask clients to visit one of the copies instead of the main site. This
scheme involves no automated mechanisms to route clients or to keep content consistent.
Similarly, this scheme is not at all transparent as it requires effort on a user’s part to use
a mirror. Figure 2.8 shows a client requesting a Web page form a mirror site. Note that
the client directly accesses the mirror server, without having any contact with the home
server.

Many attempts have been made to automate mirroring both for the clients and site
(or mirror) maintainers. As such, many schemes have been developed for automatically
redirecting clients to mirror sites. These range from simple schemes using round-robin
DNS scheduling [54] to more complex ones involving analyzing client location (based on
domain name or IP address) to help route clients to their closest available replica. In the
future, IPv6 anycasting [46, 33] can provide a good way to direct clients to appropriate
mirror sites. Similarly, many different schemes for automatically updating content have
also been developed. These range from simple schemes that regularly copy the master
site to the replicas, to more complex schemes involving network synchronization proto-
cols [104] which allow replicas to remain consistent while limiting bandwidth usage. It
is important to note that application of such schemes is ad-hoc and up to the maintainer
of a Web site to implement. The extent of solutions implemented is usually dependent
on the site’s requirements. Thus, for some sites (e.g., those that are not updated often)
manual replication and weak consistency are sufficient, while other sites (e.g., large sites
that are maintained and updated by a large group of people) require strong consistency
and implement automatic replication policies.

2.3.3 Content Distribution Networks

Building and running a mirroring solution as described above generally requires a con-
siderable effort from the content provider. Content distribution networks (CDNs) are

30 CHAPTER 2. CURRENT SOLUTIONS

Web Server

Mirror Server Mirror Server

Mirror Server

C

Mirror Server

2

1

Figure 2.8: Requesting a Web page from a mirror server.

2.3. REPLICATION-BASED SOLUTIONS 31

a category of replication solutions that remove this burden from the content provider and
place it with a specialized (CDN) service provider. A content distribution network is a
widely distributed network of servers that offers replication services to content providers.
Content providers who make use of CDN services are assured that their content will be
replicated on servers near their clients, thereby providing improved performance to their
clients. Likewise, use of a CDN also eases the load on the content provider’s own servers
and reduces overall congestion on the Internet.

Web Server

Router
Request

Surrogate Server

Surrogate Server

Surrogate Server

C

Surrogate Server

5

4

1
2

3

Figure 2.9: Requesting a Web page through a Content Distribution Network.

Figure 2.9 shows a client requesting a Web page through a CDN. When attempting to
access a resource hosted on a CDN, a client first sends a request to the resource’s home

32 CHAPTER 2. CURRENT SOLUTIONS

server. This request is intercepted by the CDN’s request router or forwarded by the home
server to such a router (step 1).

The request router analyzes the request and chooses a surrogate server to forward the
request to. A surrogate server is a server that stores and serves replicas of hosted Web
documents. The surrogate server is chosen such that it fulfills a number of CDN specific
criteria such as geographic or network proximity to the client, low load, etc. Once a
surrogate is chosen the request router instructs the client (step 2) to redirect its request to
that surrogate (step 3). When the request arrives at the surrogate, the requested resource
may already be locally available or the surrogate may have to fetch it from the home server
(step 4). Once the resource is locally available at the surrogate, the request is fulfilled by
returning the local copy of the requested resource directly to the client (step 5). Depending
on the design of the CDN, subsequent requests (for the same or different resources) may
be handled in the same way or sent directly to the surrogate.

CDN Architecture

At an architectural level a CDN consists of at least two components: the request router and
the surrogate servers. In some CDNs the network connection between surrogate servers
may be a private network (e.g., a satellite link) in which case it also forms part of the
architecture. In other CDNs communication is performed over existing networks such as
the Internet. The home server (as shown in Figure 2.9) is generally not part of the CDN
architecture.

Request Router A CDN’s request router component is responsible for routing client
requests to appropriate surrogate servers. There are three types of request-routing
mechanism currently used in CDNs: DNS-based routing, transport-layer routing, and
application-layer routing.

DNS-based routing involves the use of specialized DNS servers that resolve DNS
names to addresses of different surrogate servers based on customized name resolution
and routing policies. For example, when a client attempts to resolve the name of a Web
server whose content is hosted on a CDN, the DNS server will resolve that name to the
address of the client’s closest surrogate.

Transport-layer routing involves the inspection of transport layer (e.g., TCP) packet
data to make routing decisions. Routing decisions are made based mainly on source and
destination IP addresses of packets. This is similar to the approach taken in L4/2 and L4/3
server clustering.

Finally, application-layer routing involves making decisions based on application layer
messages. A request router can, for example, determine the type of resource requested
based on HTTP headers and route the request to an appropriate server. Other techniques
involve using cookies or other site-specific identifiers to determine or remember where
to route a client’s requests to. A different kind of application-layer technique involves
modifying the returned content to control routing of subsequent requests. For example,
the URLs embedded in an HTML page may be modified to refer directly to an appropriate
surrogate.

2.3. REPLICATION-BASED SOLUTIONS 33

Note that these mechanisms are not exclusive, they may be combined to increase
request-routing performance. For example, while a first request may be routed using
DNS-based routing, the content returned by a surrogate may be modified so that subse-
quent requests for embedded content will be requested directly from that surrogate.

Besides the mechanism used, another important aspect of request routing is surrogate
selection, that is, deciding which surrogate a request should be directed to. While it is im-
portant to route requests to good servers, that is, ones that will provide good performance
for the client, requests should also be routed in such a way that the overall load on the
CDN’s surrogates is evenly balanced. The decision of where a request is routed to is gen-
erally based on some combination of geographic mapping (finding a surrogate in close
geographic proximity to the client), network mapping (finding a surrogate in close net-
work proximity to the client), delay mapping (finding a surrogate with the shortest delay
to the client), content type, content size, number of requests and system load. Research
indicates that deciding on appropriate proximity metrics is not easy [74, 38]. Furthermore,
because the algorithms used for choosing the right surrogate are an important factor of a
CDN’s performance they are often considered trade secrets.

Surrogate Servers A CDN’s surrogate servers host replicas of the content served by
the CDN. Important issues with regards to surrogate servers are server placement, replica
placement and coherency. Generally, surrogate servers are placed as close to potential
clients as possible. For example, in large commercial CDNs, surrogate servers are often
hosted by Internet service providers (ISPs) so that the ISP’s clients will be in the same
autonomous system (AS) as the surrogate. This allows the clients to benefit from better
access to content replicated on the surrogate server.

When deciding where to place replicas the goal is to place them such that the access la-
tency perceived by clients and overall network bandwidth consumption when transferring
data to clients are minimized. Much research has been done regarding the optimum place-
ment of replicas. Proposed approaches include theoretical models based on graph theory
as well as heuristic models that use operational data (such as workload patterns and net-
work topology) to determine where to place the servers [87]. In practice, the theoretical
approaches are difficult to apply because they are either too computationally expensive
or are too limited (e.g., they consider only proximity and do not consider network char-
acteristics or workload). According to [87] and [53] a heuristic greedy algorithm (which
chooses surrogates that best minimize access costs such as latency and bandwidth for all
clients) is the best approach for determining where to place replicas.

Besides deciding where to place replicas, an important issue is also when to create
replicas. Replicas can be created on-demand, that is, at the time that a client requests
a Web page and that page’s content is not available at a surrogate server. Replicas can
also be created in advance, so that a surrogate will always contain the right replica when a
client is redirected to it. In the first approach, replica placement is dynamic and the choices
of where to place replicas can take changing conditions (such as network congestion, Web
resource usage, etc.) into account. On the other hand, this on-demand replication means
that there is a chance that a client may have to wait until the surrogate actually receives the

34 CHAPTER 2. CURRENT SOLUTIONS

contents before being able to access it. This is especially problematic when the content is
large (e.g., a video).

Finally, replicas at surrogate servers must be kept consistent with the originals hosted
on the home servers. As with cache servers, there are numerous strategies possible, of-
fering a range of consistency levels. Unlike caching, however, in a CDN the location
of all replicas is known, making invalidation a viable solution. Likewise, communica-
tion between surrogates does not have to comply with the HTTP protocol (or other Web
standards), which means that other, more flexible, approaches are also possible. For ex-
ample, Ninan et al [72] have suggested using leases and cooperation between surrogates
to maintain consistency of replicated content.

Examples of CDNs

Akamai With over 13 000 surrogate servers Akamai [3] deploys the worlds largest and
best known CDN. Akamai uses DNS-based request routing to route client browsers to
surrogate servers. Content providers who distribute their content through Akamai’s CDN
must adapt their HTML pages. This involves replacing local URL references (i.e., those
that refer to the content provider’s own server) by URL references that contain an Akamai
host name [60]. When a client attempts to resolve an Akamai URL, the Akamai DNS
server finds a surrogate close to the client and returns this surrogate’s address. In this way,
after the initial contact with a Web site’s home server, all subsequent resources are re-
trieved from the nearest surrogate server. Note that, besides network-topological distance,
the request routing algorithm also takes load balancing of surrogate servers into account.
The details of this algorithm are not publicly available.

With regards to replication, Akamai surrogate servers act as cache servers, that is,
content is retrieved by a surrogate server only when it is requested by a client. Consistency
of replicated content is maintained using expiration. Once content has been retrieved by
a surrogate it is cached for a given time which is determined by a resource’s time-to-live
value. Akamai also allows cached content to be invalidated by the content provider. When
content is invalidated, surrogates must retrieve content from the home server the next time
it is requested.

RaDaR Unlike Akamai where content is cached on-demand by surrogate servers, in
RaDaR [88] content is replicated to surrogates using a dynamic replication algorithm.
This dynamic replication algorithm uses information about server load and client distri-
bution when deciding where to place replicas. Because the replica placement decisions
are dynamic they can change in response to changes in access patterns, network charac-
teristics, or the available surrogate servers.

The overall RaDaR architecture is slightly different than the general CDN architecture
presented earlier in Figure 2.9. In particular, the functionality of the surrogate server is
divided over three different servers: the distributor, the redirector and the replica server,
as shown in Figure 2.10.

Like Akamai, RaDaR uses DNS-based request routing. Unlike Akamai, however,
RaDaR does not require the rewriting of Web pages. Instead, RaDaR requires the content

2.3. REPLICATION-BASED SOLUTIONS 35

Router
Request

Web Server

Redirector

Replica
Server

Redirector

Distributor

Distributor

Redirector

Distributor

Replica
Server

C

Distributor

21

7

6

5

4

3

Figure 2.10: The RaDaR architecture.

36 CHAPTER 2. CURRENT SOLUTIONS

provider to delegate the task of resolving its Web site address (i.e., resolving the host name
used in its URLs) to a RaDaR enabled DNS server. In this way, when a client attempts to
resolve the address of a Web site hosted by RaDaR, the RaDaR DNS server determines
the closest distributor and returns that distributor’s address (steps 1 and 2).

When the distributor receives a request for a Web resource (step 3), it contacts an
appropriate redirector (step 4) to determine where a copy of that resource is located. In
RaDaR each redirector is responsible for keeping track of the locations of a fixed set of
resources. Finding an appropriate redirector for a given resource is done using the hash of
the requested resource’s name. Given a resource name, the redirector locates the nearest
replica server hosting the requested resource and forwards the request to that server (step
5). This replica server returns the resource directly to the distributor (step 6), who in turn
returns it to the client (step 7).

Replicas hosted on replica servers are kept consistent with their originals using a
primary-backup strategy [5]. In this strategy one of the replicas is designated as the pri-
mary replica, while the rest are considered backups. All updates are first processed by the
primary and are then propagated to the backups.

2.4 Per-document Solutions

A common characteristic of the solutions surveyed in this chapter is that each proposed
solution attempts to impose a one-size-fits-all policy on all Web resources (or at least all
resources that are accessed by or take part in the solution). However, in the Web, there is a
large diversity in Web document characteristics. For example, document sizes, document
popularity, the geographical location of clients and the frequency of updates vary greatly
from one document to another [83].

As stated in Chapter 1 we claim that no single policy can be good enough in all cases.
Thus, instead of attempting to design a single universally optimal policy, several spe-
cialized policies should be used simultaneously. Depending on its characteristics, each
document should be replicated using the policy best-suited for that particular document.

This section describes a simulation experiment performed to support this claim. In
this experiment simulations, based on traces collected from the Vrije Universiteit’s Web
server, were performed in order to determine whether applying per-document policies
would result in performance increases when compared to one-size-fits-all policies. The re-
sults show a significant performance improvement with respect to end-user delays, wide-
area network traffic and document consistency.

This section is organized as follows: Section 2.4.1 describes the experimental setup,
Section 2.4.2 describes the configurations used, and Section 2.4.3 discusses the methods
designed for associating optimal policies to documents and presents the simulation results.

2.4.1 Experimental Setup

The experiment involved simulating clients performing requests for Web documents
(HTML pages) and measuring the performance (i.e., the time it takes to retrieve the doc-

2.4. PER-DOCUMENT SOLUTIONS 37

ument) for each of these documents. The documents were distributed over Web servers
using various replication configurations. In order to make the simulations as realistic as
possible, they were not based on statistical traffic models, but rather on real traces and
performance measurements.

The request characteristics (i.e., when and from where Web documents were requested)
and the set of Web documents requested were based on traces collected at the Vrije Uni-
versiteit’s Web server. In the simulation the whole set of Web documents was hosted on a
single server while clients (located worldwide) retrieved the documents from the server or
from intermediate servers (i.e., caches or replicas). During the experiment we investigated
the effect of various replication policies on the quality of service perceived by the users.

A single run of the experiment consisted of simulating clients performing requests
for a particular Web document, where the Web document was replicated according to a
specific replication configuration. The exact configurations used are described later in
Section 2.4.2. One simulation was run per document per configuration. For each run we
measured (i) the delay at the clients, (ii) how many clients received stale copies, and (iii)
the network bandwidth consumed. We then accumulated each of these values over all runs
to determine the performance of any configuration over the entire set of documents.

Document Model

All documents requested were static documents. It was assumed that all documents were
updated at the main server. It was also assumed that the server could detect such updates in
order to propagate appropriate information to the copies (if the replication policy required
it).

Placement of Intermediate Servers

To reliably simulate replication policies, it was necessary to first determine how many
document copies were necessary and to decide which client would use which copy. The
extent to which this choice reflects reality strongly determines the validity of the final
results. Therefore, it was decided to take the actual network topology into account in
order to let adjacent clients share copies, minimize bandwidth, and so on.

Clients were grouped based on the autonomous systems hosting them. Autonomous
systems (or ASes) are used to achieve efficient worldwide routing of IP packets [16]. Each
AS is a group of nodes interconnected by network links. Its managers are responsible for
routing inside their domain. They export information only about their relations to other
ASes, such as which ASes they can receive packets from, and which ASes they can send
packets to. Worldwide routing algorithms use this information to determine the optimal
route between two arbitrary machines on the Internet.

An interesting feature of ASes is that they generally consist of relatively large groups
of hosts that are close to each other with respect to the network topology. As such, it is
safe to assume that the network connection performance is much better inside an AS than
between two ASes.

38 CHAPTER 2. CURRENT SOLUTIONS

unknown ASes Clients in AS4
Clients in

Server

Autonomous System 4

Clients in AS1 Clients in AS2 Clients in AS3

Server
Intermediate Intermediate

Server Server
Intermediate

Autonomous System 1 Autonomous System 2 Autonomous System 3

Figure 2.11: Experiment configuration.

This feature of ASes led to the placement of at most one intermediate server (cache
or replica) per AS. It was also decided to bind all clients to their AS’s intermediate server
(see Figure 2.11). This rule has two exceptions. First, it would be pointless to create an
intermediate server in the same AS as the master server: clients located in this AS can
directly access the master as well. Second, the few clients for which no AS could be
determined would also access the master server directly.

Collecting Traces

To simulate the replication of documents, it was necessary to register each event that could
happen to a document: creation, update or request. The Web server logs provided the
necessary information about the requests for documents: request time and IP address of
the clients. The Web server’s file system was monitored to detect any creation or update
of a file located in the Web server’s directories. In this way, it was possible to obtain
information about the update times and the new sizes of documents. Document creation
was handled as a special case of an update. We also measured the network performance
between the master server and each AS in our traces.

Measuring the Network Performance

To measure the network performance from the master server to each AS in the experiment,
five hosts were randomly chosen inside each AS. For each of these hosts, a number of
ping packets of different sizes were sent, and the round-trip time measured. Performing
a linear regression analysis on these results provided an approximation of the latency and
bandwidth of the network connection to these hosts. The latency corresponds to half

2.4. PER-DOCUMENT SOLUTIONS 39

of the round-trip delay for a packet of size 0; the bandwidth corresponds to additional
delays due to a packet’s size4. (see Figure 2.12). Symmetrical network performances are
assumed, that is, the performance from the master server to any host is considered equal
to the performance from that host to the master server5.

R
ou

nd
-t

rip
 d

el
ay

Measured samples
Linear regression

Bandwidth=163kB/s

Latency=89/2=44.5ms

135

130

125

120

115

110

105

100

95

90

85
0 1000 2000 3000 4000 5000 6000 7000 8000

Packet size

Figure 2.12: Determining the network performance to a host based on ping samples.

The Simulations

The simulations were based on a modified version of Saperlipopette, a discrete event sim-
ulator of distributed Web caches [81]. Saperlipopette allows the simulation of any number
of caches, each cache being defined by its internal policies (replacement, consistency, co-
operation) and its size. Given information about the network performance, Saperlipopette
can replay trace files and calculate metrics such as the cache hit rates, document access
delays and the consistency of delivered documents. Saperlipopette was extended to im-
plement permanent replicas in addition to caches. Also, more consistency policies, such
as invalidation, were added.

Simulating Caching Configurations

A Web cache generally caches Web documents that originate from many different servers.
Because the traces used for this experiment reproduce only part of the traffic managed by
each cache, it was not possible to simulate cache replacement policies; their behavior
depends on the entire traffic seen by each cache. Therefore, the caches are simulated
without any replacement policy (i.e., caches have an infinite size). To roughly reproduce
the behavior of the replacement policies, it was decided that a copy could not stay in
a cache for more than seven days, independent of any consistency considerations. This
delay is a typical value of any document’s time-to live inside a Web cache [73]. When the
time-to-live value expires, the corresponding copy is removed from the cache.

4Rather than measuring the true bandwidth of the connection, this actually measures the throughput of the
connection. This does not, however, affect the validity of the results.

5Because paths in the Internet are generally not bi-directional, this leads to rough estimates for the latency
measurements, rather than exact values. Once again, this does not affect the validity of the results.

40 CHAPTER 2. CURRENT SOLUTIONS

Evaluation Criteria

Choosing a replication policy requires making tradeoffs. Replicating a Web document
affects the client access time, the consistency of copies delivered to the clients, the master
server load, the overall network traffic, etc. It is generally impossible to optimize all these
criteria simultaneously. Therefore, evaluating the quality of service of the system should
involve metrics that characterize different aspects of the system’s performance. Three
metrics, representing the access time, document consistency and global network traffic,
were chosen:

Total delay: This is the sum of all delays between the start of a client’s request and the
completion of the response (in seconds).

Inconsistency: This is the total number of outdated copies delivered to the clients.

Server traffic: This is the total number of bytes exchanged between the master server
and the intermediate servers or the clients. This metric measures all the inter-AS
traffic, which is taken to be the wide-area traffic; we do not take into account the
traffic between the intermediate servers and the clients, as it is considered “local.”

An important remark is that all these metrics are additive: it is possible to simulate
each document separately and add the resulting values for each document in order to get
the quality of service of the complete system. This would not be possible if the metrics
were average values, for example.

2.4.2 System Configurations

For each document, a number of setups likely to optimize the access to that document were
considered. All configurations are based on the same system model; the only difference
between them is the nature of the intermediate servers and the coherence policy they use.

Base Configuration

This configuration acts as a baseline configuration:

NoRepl: This configuration uses no caching or replication whatsoever. All clients contact
the server directly, without any intermediate servers.

Caching Configurations

In the caching configurations each intermediate server acts as a proxy cache. These proxy
caches may implement the following policies:

Check: When a cache hit occurs, the cache systematically checks the copy’s consistency
by sending an If-Modified-Since request to the master before answering the client’s
request.

2.4. PER-DOCUMENT SOLUTIONS 41

Alex: When a copy is created, it is given a time-to-live proportional to the time elapsed
since its last modification [23]. Before the expiration of the time-to-live, the cache
can deliver copies to the clients without any consistency checks. At expiration of
the delay, the copy is removed from the cache.

In the simulations, a ratio of 0.2 was used because that is the default in the Squid
cache [24]. Thus:

Tremoved − Tcached

Tcached − Tlast modification
= 0.2

AlexCheck: This policy is identical to Alex except that, when the time-to-live expires,
the copy is kept in the cache with a flag describing it as “possibly stale.” Any hit on
a possibly stale copy causes the cache to check the copy’s consistency by sending
an If-Modified-Since request to the master before answering the client’s request. This
policy is implemented in the Squid cache [24].

CacheInv: When a copy is created, the cache registers it at the server. When the master
is updated, the server sends an invalidation to the registered caches to request them
to remove their stale copies. This policy is similar to the AFS caching policy [95].

Replica Configurations

In the replica configurations, intermediate servers act as replica servers. Replica servers
contain permanent copies of documents. There are a relatively small number of such
servers. This allows the application of strong consistency policies, which would be pro-
hibitively expensive in the case of a large number of caches.

The traces collected involve clients from a few thousand different ASes. This led
us to consider caching systems with as many caches as ASes. However, it would not
be feasible to create that many replication servers. It was decided, therefore, to place
replication servers in the autonomous systems where most of the requests came from.
The rationale behind this choice being that most requests come from a small number of
ASes, as discussed below.

N
um

be
r

of
 r

eq
ue

st
s

101
1

10

100

10,000

100,000

1,000,000

1,000
Autonomous system rank

10,000

100

1,000

10,000,000

Figure 2.13: Number of requests per autonomous system.

42 CHAPTER 2. CURRENT SOLUTIONS

Figure 2.13 shows the number of incoming requests per AS (the ASes are sorted by
decreasing number of requests). In our case, the top 10 ASes issued 53% of the requests,
the top 25 ASes issued 62% of the requests, and the top 50 ASes issued 71% of the
requests.

Replication servers were placed only in the “top ASes.” Clients located inside one of
these ASes would be bound to their local replica. Other clients would send their requests
directly to the server (see Figure 2.14).

ServerServer
Replica

unknown ASes Clients in AS4
Clients in

Autonomous System 4

Server

Clients in AS1 Clients in AS2 Clients in AS3

Autonomous System 1 Autonomous System 2 Autonomous System 3

Replica

Figure 2.14: Replica configuration.

The three replica configurations were distinguished only by the number of replicas
created. These are summarized as follows:

Repl10, Repl25, Repl50: Replicas are created in the top 10, 25, or 50 ASes. Consistency
is maintained by pushing updates: when the master is updated, the server sends
updated copies to the replica servers.

Hybrid Configurations

In the replica configurations, many clients access the server directly (because they are in
lightly populated ASes, for example, clients from autonomous system 3 in Figure 2.14).
The AS of such clients generates only a few requests to our server, so it is not worthwhile
installing a replica there. It might, however, be worthwhile to install a cache, which is
cheaper to maintain than a replica, in these ASes. The hybrid configurations were created
to address these situations.

A hybrid configuration is similar to a replica configuration, except that it includes a
cache in each autonomous system that does not contain a replica (see Figure 2.15). Two
hybrid configurations were defined based on the consistency policy of the caches used.

2.4. PER-DOCUMENT SOLUTIONS 43

ReplicaReplica
Server

unknown ASes Clients in AS4
Clients in

Autonomous System 4

Server

Clients in AS1 Clients in AS2 Clients in AS3

Autonomous System 2 Autonomous System 3Autonomous System 1

Server Cache

Figure 2.15: Hybrid configuration.

Repl50+Alex: Similar to Repl50, but the autonomous systems which do not contain a
replica server use an Alex cache instead.

Repl50+AlexCheck: Similar to Repl50, but the autonomous systems which have no
replica server use an AlexCheck cache instead.

2.4.3 Results

The results of the experiment are presented as follows. First a brief overview of the traces
collected is given. Next the result obtained when the same policy is associated to all
documents (one-size-fits-all) is presented. This is followed by a discussion of possible
methods for associating each document with its most-suited replication policy. Finally
the performance improvements when using per-document policies are presented.

Collected Traces

Number of documents 17,368
Number of requests 2,118,572
Number of updates 9,143
Number of unique clients 107,386
Number of different ASes 2,785

Table 2.1: Characteristics of the collected traces

44 CHAPTER 2. CURRENT SOLUTIONS

Traces were collected for 5 weeks, from Sunday August 29, 1999 to Saturday October
3, 1999. Table 2.1 shows some statistics about the resulting traces. The server used
handles medium-size traffic and documents are not updated very frequently (the average
life-span is 67 days). Large servers, such as electronic-commerce servers, are expected to
have more heterogeneous document sets than ours. Therefore, they should benefit even
more from the ability to choose the replication policies per document.

One-size-fits-all Policies

Configuration Delay Incons. Traffic
(hours) (no.) (GB)

NoRepl 219.0 0 43.91
Check 229.2 0 23.60
Alex 96.4 5211 23.51
AlexCheck 96.6 4821 23.23
CacheInv 93.7 0 23.18
Repl10 177.4 0 43.60
Repl25 145.0 0 48.06
Repl50 121.9 0 55.55
Repl50+Alex 67.5 966 46.93
Repl50+AlexCheck 67.6 941 46.86

Table 2.2: Performance of the one-size-fits-all policies.

Table 2.2 shows the resulting performance when the same policy is applied to all
documents (one-size-fits-all policies). As expected, the NoRepl policy has bad results
compared to the others in terms of delay and traffic. On the other hand, it provides perfect
consistency.

Most policies are good with respect to one or two metrics, but none optimize on all
three metrics. For example, Repl50+Alex and Repl50+AlexCheck provide excellent
(low) delays. On the other hand, they do not do as well with respect to inconsistency
and amount of traffic generated. Other configurations have similar problems.

Assigning Optimal Policies to Documents

The key question is whether it is possible to find a configuration that provides good per-
formance for all documents with respect to all metrics at the same time. In order to answer
this question it is necessary to determine, for each document, a custom configuration that
optimizes that document’s performance. Determining an optimal configuration for a doc-
ument requires finding an optimal replication policy for that document. The overall per-
formance using these custom configurations is then compared to the overall performance
when using the one-size-fits-all configurations.

2.4. PER-DOCUMENT SOLUTIONS 45

For a given document, finding the best replication policy consists of deciding which
policy provides the best compromise between the different metrics. Policies that are rela-
tively good with respect to all metrics are preferred above those that are very good in one
metric and very bad in the others.

Assigning a policy proceeds as follows: based on the simulation results, each policy
is given a score. For a given document, the policy with the lowest score is declared
“optimal.” A policy’s score is a weighted sum of the evaluation metrics:

score =
delay

α
+

incons

β
+

traffic
γ

Choosing values for α, β, and γ allows one to control the relative weight of each
metric. The larger a weight is, the less the associated metric will influence the final re-
sult. Because different metrics are expressed in different units, the factors α, β and γ are
expressed such that a score is always dimensionless.

This method is used to assign a policy to each document. Using it with the same pa-
rameter vector (α, β, γ) leads to an arrangement: a parameter-specific set of (document,
policy)-pairs. Thus, for a given (α, β, γ), each arrangement has an associated value, which
is expressed as a vector 〈total(metric1), . . . , total(metricn)〉 where total(metrick) de-
notes for metric k the value accumulated over all documents in the arrangement. A de-
tailed evaluation of this assignment strategy can be found in [80].

Comparing One-size-fits-all to Custom Policies

Comparing arrangements is somewhat difficult because the values of arrangements actu-
ally form a partially ordered set. It is preferable to compare each arrangement with an
ideal target point. This point corresponds to the best achievable delay (obtained by se-
lecting the policy providing the smallest delay for each document) and the best achievable
traffic (obtained by selecting the policy providing the smallest amount of traffic for each
document). Of course, for a given document, the best policy in terms of delay and the best
policy in terms of traffic are not always the same. The target point is, therefore, generally
impossible to reach. Nevertheless, this point acts as an upper bound for performance: it is
impossible to obtain a better performance than the target. The target point can also be used
to compare the arrangements: the closer it gets to that point, the better an arrangement is.

To simplify matters, β was given a very small value, making the optimization of con-
sistency an important requirement. By subsequently modifying the relative weights for
delay and traffic, it was possible to obtain a number of arrangements that implement vari-
ous delay/traffic trade-offs.

Figure 2.16 shows the performance of arrangements in terms of total delay and server
traffic. Each point corresponds to the performance of one particular arrangement. The
arrangements where all documents are given the same policy are represented by single
points. Custom arrangements provide a set of points, each individual point being obtained
with one particular set of weights (α, β, γ), where β ≈ 0.

Among the one-size-fits-all arrangements, some have good performance with respect
to delay, but poor performance with respect to traffic; some others behave the other way

46 CHAPTER 2. CURRENT SOLUTIONS

S
er

ve
r

tr
af

fic
 (

G
by

te
s)

2202001801601401201008060

25

30

35

40

45

50

55

60

Repl50+Alex

Target

CacheInv
Alex

AlexCheck

Repl25
NoRepl

Check

Repl50+AlexCheck

Repl50

Repl10

Total delay (hours)

Custom arrangements

Figure 2.16: Performance of arrangements vs. one-size-fits-all configurations.

round. However, none of them comes very close to the target. On the other hand, custom
arrangements do come close to the target. This means that selecting replication policies
on a per-document basis provides a significant performance improvement over any one-
size-fits-all configuration.

Chapter 3

The GlobeDoc Approach

GlobeDoc is an object-based model and architecture for the Web that provides a solu-
tion for the scalability related performance problems discussed in Chapter 1. Like most
of the current approaches examined in Chapter 2, GlobeDoc relies on replicating Web
resources, thus localizing traffic and reducing individual server loads, to improve perfor-
mance. Unlike these approaches, however, GlobeDoc does not impose a single global
replication policy on all Web resources. As has been shown, the ability to apply resource
or document-specific replication policies is necessary to achieve the scalability required
to overcome scalability-related performance problems.

This chapter will present the GlobeDoc model and system architecture. Because
GlobeDoc is designed as a Globe application, an overview of the Globe distributed system
will first be given in Section 3.1. Section 3.2 will present the GlobeDoc object model, Sec-
tion 3.3 will briefly discuss replication policies, and Section 3.4 will describe the Globe-
Doc system architecture.

3.1 Globe Overview

Globe is a middleware infrastructure for building wide-area distributed applications. It
provides a distributed shared object model and infrastructural support services for using
these objects. Globe distributed shared objects are objects that can be physically dis-
tributed over a wide-area network and that completely encapsulate their own distribution
policies. This means that a Globe object can determine its own policy for replication,
partitioning, and migrating its state, among other things. In Globe, wide-area distributed
applications are modeled using application-specific Globe objects.

This section will provide a short introduction to and overview of Globe. More detailed
information about the design and implementation of Globe can be found in [108, 47].

47

48 CHAPTER 3. THE GLOBEDOC APPROACH

3.1.1 Globe Object Model

In the Globe model, processes interact and communicate through distributed shared ob-
jects (DSOs). A distributed shared object offers (exports) one or more interfaces, each
consisting of a set of methods. Objects are passive, but multiple processes may simul-
taneously access the same object. Changes to an object’s state made by one process are
visible to other processes. A Globe object is physically distributed, meaning that its state
may be partitioned and replicated across multiple machines at the same time. However,
processes are not aware of this: state and operations on that state are completely encap-
sulated by the object. All implementation aspects, including communication protocols,
replication policies, and distribution and migration of state, are part of the object and are
hidden behind its interface.

Distributed Shared Objects

A distributed shared object is built from a collection of local representatives (LRs), each
of which resides in a single address space and communicates with local representatives
in other address spaces (typically on other machines). A local representative is imple-
mented as a local object (which, in contrast to a distributed object, always resides within
a single address space). Each local representative forms a particular implementation of a
distributed object’s interface. For example, an LR in one address space might implement
an interface by forwarding all method invocations to an LR in another address space, sim-
ilar to an RPC client stub. Another local representative might, however, implement that
same interface as operations on a local copy of the object’s state. Together all the local
representatives form the representation of one instance of a Globe distributed shared ob-
ject. The local representatives that form an instance of distributed object are referred to as
each other’s LR peers.

For a process to invoke an object’s method, it must first bind to that object by con-
tacting one of the object’s contact points. A contact address describes such a point,
specifying a network address and a protocol through which binding can take place. Bind-
ing results in a local representative being placed in the client’s address space. Figure 3.1
illustrates this model and shows a Globe object distributed across four address spaces (A1
through A4). Note that there is no local representative in address space A5. Consequently,
A5 is not part of the object.

Local Object

One of Globe’s aims is to let application developers concentrate on designing and imple-
menting their application’s functionality in terms of objects. Distribution, being a different
concern, should be treated separately. For this reason local objects are constructed in a
modular way allowing issues such as replication and communication to be separate from
what the object actually does (i.e., its semantics). A local object, therefore, consists of
four subobjects as shown in Figure 3.2:

The subobjects are:

3.1. GLOBE OVERVIEW 49

LR

Address Space A1 Address Space A2

Address Space A3

Address Space A5

Address Space A4

Shared Object
Distributed

Network

Figure 3.1: Example of a Globe object distributed across four address spaces.

50 CHAPTER 3. THE GLOBEDOC APPROACH

Subobject
Semantics

Subobject
Replication

Subobject
Communication

Control Subobject

Figure 3.2: General structure of a local object.

3.1. GLOBE OVERVIEW 51

• A semantics subobject containing the code that implements the distributed shared
object’s functionality

• A communication subobject for sending and receiving messages from other local
objects

• A replication subobject containing the implementation of a specific replication
policy

• A control subobject handling the control flow within the local object.

These four subobjects are designed to build scalable distributed shared objects.

Semantics subobject The semantics subobject implements the interfaces that define
a particular distributed shared object, thus implementing the semantics of that object.
Among a semantic object’s primary responsibilities is the storage and manipulation the
distributed object’s state. A developer writes the semantics subobject in C, C++, Java, or
some other language. In contrast to the replication and communication subobjects, the
semantics subobject developer is also responsible for defining the interfaces implemented
by the subobject. In principle, the semantics subobject is the only subobject a developer
needs to construct personally. All other subobjects can either be obtained from libraries,
or be generated from interface specifications.

Communication subobject. This is usually a system-provided local object. It is re-
sponsible for handling communication between parts of the distributed object that reside
in different address spaces (i.e., the LR peers). Depending on what is needed from the
other components, a communication subobject may offer primitives for point–to–point
communication, multicast facilities, or both. Several communication subobjects can co-
exist in the same local object. The communication subobject provides a standard interface
that allows for a variety of different implementations. For example, it is possible to have
implementations for network protocols such as UDP, IP multicast, and TCP, that all pro-
vide the same interface.

Replication subobject. The global state of a distributed object is made up of the state
of its various semantics subobjects (i.e., the semantics subobjects belonging to the DSO’s
local representatives). An object’s state may be replicated for reasons of fault tolerance
or performance. Replicated state is implemented by storing copies of the object state in
the semantics objects of the DSO’s LRs. For this reason LRs are often referred to as a
Globe object’s replicas. The replication subobject is responsible for keeping these repli-
cas consistent according to some replication policy. The replication subobject operates
only on marshaled data. Different distributed objects may contain different replication
subobjects, and thus use different replication algorithms. A replication subobject also
controls the actions taken by the control subobject.

52 CHAPTER 3. THE GLOBEDOC APPROACH

Control subobject. The control subobject takes care of invocations from client pro-
cesses, and controls the interaction between the semantics subobject and the replication
subobject. It is responsible for marshaling parameters and state and passing these to the
replication subobject when requested. Incoming invocation requests are also handled by
the control subobject.

3.1.2 Globe System Model

Client-to-Object Binding

As mentioned earlier, in the Globe model, processes communicate by sharing a distributed
object. To communicate through a distributed object, it is necessary for a process to first
bind to that object. The result of binding is that a local representative is placed in the
address space of the requesting process allowing the process to directly invoke the object
’s methods. Binding itself consists of two distinct phases: (i) finding the object, and
(ii) installing the interface. This is illustrated in Figure 3.3 . Finding an object is separated
into a name-lookup (step 1) and a location-lookup step (step 2); installing the interface
requires that a suitable contact address be selected, as well as an implementation for that
interface (steps 3 to 5).

Name Lookup

To find an object, a process must resolve the object’s name to an object handle. This is
done by passing the object name to a naming service (step 1 in Figure 3.3). The naming
service returns an object handle, which is a location-independent and universally unique
object identifier, such as a 128-bit number, which is used to locate objects. It can be passed
unmodified between processes as an object reference. Whereas an object handle uniquely
identifies an object (i.e., an object always has exactly one object handle), an object may
have multiple names that resolve to its object handle. An object name is simply a human-
readable string that represents an object. It is up to the naming service to interpret this
name and resolve it to an object handle.

Resolving an object’s name leads to an object handle (step 2 in Figure 3.3). An object
handle, however, does not identify the location of an object and its replicas. To find the
actual object, the object handle must first be passed to a location service, which returns
one or several contact addresses (step 3 in Figure 3.3).

Location Lookup

The goal of the location service is to find an object’s contact points given its object handle.
A contact point is represented by a contact address. The location service is, therefore,
responsible for storing contact addresses and resolving object handles to these contact
addresses. Besides looking up contact addresses for objects, the location service also
allows addition, deletion and modification of contact-address mappings.

Because any use of a Globe object requires binding to it (and therefore use of the
location service), the location service presents a potential scalability and performance

3.1. GLOBE OVERVIEW 53

region A1

B2
B1

A0

A1
A2

B0 C0

C1

PB
PCPA

R

region A0 region A2

region B1

region B0

region B2

region C0

region C1

region PA region PB region PC

region R

Distributed Shared Object

LR

Naming Service

Location Service

Implementation
Repository

Client Process

Contact
Address

Make
Contact

Protocol
Identifier

6

5

4

2

1

3

Code

Name

Object Handle

Figure 3.3: Binding a process to a distributed shared object.

54 CHAPTER 3. THE GLOBEDOC APPROACH

bottleneck in the Globe architecture. To overcome this problem, the location service is
implemented as a distributed search tree, as shown in Figure 3.4. In this tree, the world
is divided into a hierarchical set of domains. At the lowest level there is one domain per
site; a collection of sites form a region, etc. An object is recorded at each site where it has
a contact address, and recursively in each enclosing region, up to the root of the tree.

region A1

B2
B1

A0

A1
A2

B0 C0

C1

PB
PCPA

R

region A0 region A2

region B1

region B0

region B2

region C0

region C1

region PA region PB region PC

region R

Figure 3.4: Globe’s worldwide search tree used for locating objects.

Initially, a record at the site level contains the actual contact addresses and records
at higher levels contain pointers to the next lower level. Recording an object at multiple
levels allows searches with expanding rings: a search starts at the local site, followed by
the local region, then the next higher level region, etc., eventually followed by the root.
Searching with expanding rings provides the desired locality (that is, remote or wide-
are communication is avoided). If the object has a contact address in the site or local
region of the requesting process, then contact addresses will be found using only local
communication.

More information about the design, implementation and performance of the location
service can be found in [107, 12].

Contact Addresses and Implementation Selection

Once a process knows where it can contact the distributed object, it needs to select a
suitable address from the ones returned by the location service. A contact address may be
selected for its locality, but there may also be other criteria for preferring one address over
another. For example, some addresses may belong to subnets that are difficult to reach,
or to which only low-bandwidth connections can be established. Other quality-of-service
aspects may need to be considered as well. Note that an address selection service is a local
service that builds its own administration concerning the quality of contact addresses.

Having selected a contact address a binding process must subsequently find and load
a suitable local representative implementation. Besides describing where an object can be
reached a contact address also describes how the object can be reached. This is expressed

3.2. GLOBEDOC MODEL 55

as a protocol identifier. It specifies a complete stack of protocols that must be imple-
mented at the client’s side in order to communicate with the distributed object. Such a
protocol identifier is mainly used to load code from a (trusted) implementation reposi-
tory and to subsequently instantiate the local representative (steps 4 and 5 in Figure 3.3).

3.1.3 Globe Programming Model

Every Globe distributed shared object exports interfaces that define its functionality. The
interfaces exported by a DSO are determined by the interfaces exported by its constituent
local representatives. Every local representative exports certain control and management
interfaces (used to create, destroy and manage that LR) as well as the interfaces exported
by its semantics subobject. Generally all of a DSO’s local representatives will export the
same interfaces. Note that, while the LRs generally export the same interfaces, the actual
implementations of these interfaces may vary between them.

Object interfaces are defined in a platform and programming language independent
Interface Definition Language (IDL). An LR’s structure can be defined using an Object
Definition Language (ODL).1 An IDL compiler compiles object interface definitions
to a target language creating skeleton implementations of that interface’s methods. An
ODL description defines the interfaces that an LR will implement and the (communication
and replication) subobjects that it will contain. An ODL compiler generates the control
subobject, which is responsible for creating and initializing the LR. A programmer is
responsible for implementing the methods in the interfaces exported by an LR’s semantics
object. The combination of the generated and manual code and the communication and
replication subobject constitutes all of an LR’s code.

An object’s code is normally stored separately in one or more class objects. A class
object is a (local) object that contains the method implementations for objects belonging
to the same class. Every local object has an associated class object. By separating code
from state it is possible to instantiate several instances of the same class without having to
duplicate the code for each instance. A class object also provides a convenient container
for packaging and transporting an object’s code.

3.2 GlobeDoc Model

In the GlobeDoc model of the Web, a Web site is composed of related Web documents,
and a Web document itself is a collection of logically related Web resources. These Web
resources are referred to as a document’s elements and can be anything that is accessible
over the Web (e.g., HTML files, text files, images, audio files, video files, applets, etc.).
The relation between the resources contained in a Web document is generally stronger
than that between the documents contained in a Web site. For example, an organization’s

1Currently this is true in theory but not in practice. We have not yet defined an ODL, much less built tools
to read an ODL description and generate the appropriate skeleton objects. This means that, currently, control
objects are not automatically generated but must be made by hand.

56 CHAPTER 3. THE GLOBEDOC APPROACH

Web site contains a collection of Web documents that are somehow related to that organi-
zation, while a Web document representing a news story would contain only the elements
directly relating to that story (e.g., the HTML page plus any icons and images relating to
the story or the page layout). Note that, in this dissertation, Web documents are considered
to be static, that is, none of their elements are generated dynamically upon access.

In GlobeDoc, a Web document is encapsulated in a Globe distributed shared object
(called a GlobeDoc object) whose state contains a document’s elements. A GlobeDoc ob-
ject also offers methods that allow clients to access and modify this state on a per-element
basis. The hyperlinked structure that is normally provided by Web pages is maintained
in GlobeDoc. An internal hyperlink that is part of some GlobeDoc object refers to an
element in that same document. Likewise, an external hyperlink refers to an element of
another GlobeDoc object.

Every GlobeDoc object assigns one element to be the root element. This element
provides access to other elements through internal links and is comparable to the index.
html file. Because nothing is said about the contents of an element every element has a
set of properties associated with it. At the least, these properties include a MIME type
that describes an element’s contents.

By virtue of it being a Globe DSO, a GlobeDoc object can distribute (replicate or
partition) its state over multiple physically separated address spaces (or machines). As
such, requests for an object’s state will be distributed over these various machines, thereby
spreading the total load generated by the requests and preventing any single machine host-
ing the object from becoming overloaded. Similarly, by strategically replicating a Globe-
Doc object’s state so that it is close to large concentrations of clients, the traffic at each
replica will have a local character, increasing responsiveness for clients and decreasing
overall network traffic and saturation.

Also, because Globe makes the state distribution transparent to clients and because the
distribution policies can be determined independently per Globe object, GlobeDoc makes
it possible to apply distribution policies on a per-document basis. In this way Globe-
Doc allows replication of Web documents without imposing any single global replication
policy on all documents.

3.2.1 GlobeDoc Interfaces

A GlobeDoc object’s functionality is defined by the interfaces that it exports. These in-
terfaces define the methods used to access and modify the object’s state. There are three
main GlobeDoc interfaces. The document interface contains methods that act on the
document as a whole, allowing elements to be added and removed. The content inter-
face contains methods that act on individual elements and allow the contents of elements
to be accessed and modified. Finally, the property interface allows element properties to
be set and retrieved. Tables 3.1, 3.2 and 3.3 show an overview of these interfaces.

An element is added to a GlobeDoc object using the addElement method. This method
creates a new element with the given name and type and containing the given raw binary
data (passed as the contents parameter). The name given to the element must be used to
access, modify or delete that element in the future (Section 3.2.4 discusses the naming of

3.2. GLOBEDOC MODEL 57

interface document

method addElement Creates a new GlobeDoc element
in name The element’s name
in elementType The element’s type
in contents The element itself
method startElementAddition Starts an element creation. A new element is cre-

ated, which is visible but cannot be downloaded yet.
The element is created with the specified size, and
with undefined contents.

in name The element’s name
in elementType The element’s type
in dataSize The size of the element
method elementAdditionData Continues an element creation. A block of data is

cached or written directly to the element starting at
the specified offset.

in name The name of the element
in offset The offset at which to add the data
in data The data to add
method endElementAddition Completes an element creation. The element is now

available for downloading.
in name The name of the element
method deleteElement Removes an element
in name The name of the element to remove
method getElementSize Returns the size of an element
in name The name of the element
returns The size of the element
method setRoot Sets the root element
in name The name of the element to set as the root element
method getRoot Returns the name of the root element
returns The name of the root element
method allElements Returns the list of elements currently in the Globe-

Doc object
returns A list of element names

Table 3.1: The GlobeDoc document interface.

58 CHAPTER 3. THE GLOBEDOC APPROACH

interface content

method getIncarnationID Returns the current incarnation id of the specified ele-
ment

in name The name of the element
returns The incarnation id
method getContent Performs a complete element download
in name The name of the element
returns The element’s contents
method getContentBlock Reads a block of data from the element at the specified

offset
in name The name of the element
in incarnationID The element’s incarnation id
in offset The offset to start reading from
in maxBlockSize The maximum amount of data to read
returns The data
method putContent Updates an element in one call
in name The name of the element
in data The data to replace the element’s contents with
method startPutContent Starts the update process of an element. Separate stor-

age for the update data is claimed.
in name The name of the element to update
in dataSize The new size of the element
method putContentData Continues the update process of an element. A block of

update data is cached or written directly to the element,
starting at the specified offset.

in name The name of the element
in offset The offset
in data The data
method endPutContent Completes the update process of an element
in name The name of the element
method putAllcontent Updates all elements in the GlobeDoc object in one call
in names[] The names of the elements
in data[] The data to update the elements with

Table 3.2: The GlobeDoc content interface.

3.2. GLOBEDOC MODEL 59

interface property

method getProperties Returns all properties of an element
in name The name of the element
returns A list of properties
method setProperties Add properties to an element
in name The name of the element
in properties The properties to add

Table 3.3: The GlobeDoc property interface

elements). Although an element’s MIME type is actually a property and could be set using
the property interface, it has been chosen to set it in addElement because it is a required
property. This way it is guaranteed that an element will always have its type set. The
methods in the property interface can, however, be used to manipulate this property once
the element has been created.

Because an element can be large (e.g., an audio file, image, or video file) the document
interface also includes methods that allow an element’s contents to be added in parts. This
prevents implementations from having to store the whole element (which may be many
times larger than the available memory) in main memory while passing it as a parameter to
the addElement method. The startElementAddition method starts the element creation process
and causes a new element to be created. The element is created with the specified size
and with undefined contents. The elementAdditionData method is used to add contents to
the newly created element. It specifies the offset at which to add the given block of
data and is called repeatedly until the complete contents have been added. Finally, the
endElementAddition method is called to signify that the element is complete. This method
can cause local caches to be flushed, modified state to be propagated to replicas, etc.
After calling this method an element’s contents can be accessed using methods from the
content interface. Note that addElement is included as a convenience method and is meant
only for adding small elements. Larger elements should be added using the three methods
described above.

An element’s size (the size of its contents in bytes) can be requested by calling the
getElementSize method for a given element. The setRoot method allows an element to be
designated as the root element, and getRoot returns the name of the current root element
(none if one has not yet been set). A list of all elements contained in a GlobeDoc object
is returned by the allElements method. Finally, the deleteElement method is used to remove
an element from the GlobeDoc object.

Modifying an element’s contents is a three-step process. In the first step, a copy of
the element’s contents must be extracted with, for example, the getContent method. Next,
the element can be modified using an appropriate tool, such as an HTML or image editor.
When all modifications have been made, the element is returned to the GlobeDoc object
using one of the the putContent methods.

In the content interface, the getContent method retrieves and returns the contents of
a named element in one piece. Because an element’s contents can be large, the con-

60 CHAPTER 3. THE GLOBEDOC APPROACH

tent interface also contains methods for retrieving an element’s contents in parts. The
getContentBlock method allows a specified part of an element’s contents to be retrieved.
In order to retrieve the complete contents, getContentBlock must be called repeatedly until
all parts have been retrieved. Because content retrieval using this method spans multiple
method calls it is no longer an atomic action. This means that it is conceivable that another
client could change the element’s contents between successive calls to getContentBlock, re-
sulting in inconsistent data being retrieved. To prevent this problem, an element is given
an incarnation id, a unique identifier that is updated every time an element’s contents are
changed. If an element is modified or deleted, its current incarnation id is invalidated. A
client that wants to retrieve an element’s contents must obtain that element’s latest incar-
nation id and specify this id with each getContentBlock invocation. If the incarnation id is
invalidated during the retrieval (i.e., the element is deleted or its contents changed), the
next getContentBlock invocation, and therefore the whole download, will fail. The client
should then attempt a new download with a new incarnation id.

The process of replacing an element’s contents is similar to that of adding a new
element. There is a putContent method that replaces an existing element’s contents in one
piece. This method is similar to the addElement method in that it is only suited for small
elements. There are also three methods that allow content to be added in parts. Invoking
the startPutContent method announces the start of the process, which causes the current
incarnation id for the element to be invalidated and a new one to be created. It may
also cause required resources, such as storage for the new contents, to be claimed. Data
is added by repeatedly calling the putContentData method and passing it successive data
blocks. When all the data has been added, endPutContent is called completing the process
and possibly causing caches to be flushed, data to be replicated, etc. The putAllContent

method is a convenience method that invokes putContent for every given element.
Methods for manipulating element properties are defined in the property interface.

The getProperties method returns all of a given element’s properties, while the setProperties

method adds (or replaces) the given properties to the element’s set of properties. A prop-
erty may be removed from an element by replacing its value with a null value.

3.2.2 Transactions and Locking

As previously mentioned, modifying a GlobeDoc element is a three-step process. It in-
volves retrieving the element’s contents, modifying those contents, and returning them to
the GlobeDoc object. Unfortunately, due to the nature of this process, it is possible for
concurrent modifications of an element to interfere with each other. For example, suppose
a client A decides to modify element X. Client A would start by retrieving a copy of X
and editing it. Now suppose that client B also decides to modify X, it would also retrieve
a copy of X and start to edit it. In the meantime, A finishes its modifications and returns
the new copy of the element to the GlobeDoc object. However, when B finishes its modi-
fications and returns its new copy of X to the object, all of A’s changes are overwritten and
therefore lost. The problem is that modification of an element is not an atomic transaction.
A fourth GlobeDoc interface, the lock interface, attempts to provide modifications with
this atomicity property. The interface is presented in Table 3.4.

3.2. GLOBEDOC MODEL 61

interface lock

method checkOutElements Checks out a sequence of elements, for updating
purposes

in names[] The names of the elements to check out
returns A list of checkout ids
method checkInElements Checks one or more elements associated with the

checkout id parameter back in
in cId The checkout id
method getCheckedElements Returns the checked out elements associated with

the checkout id
in cId The checkout id
returns A list of element names

Table 3.4: The GlobeDoc lock interface

The approach is based on checking out elements to lock them for writing. Element
modification now becomes a five-step process. In the first step, all elements that are to be
modified must be checked out (by invoking the checkOutElements method). Checking out
elements locks them for writing and results in a checkout identifier for those elements. The
next three steps are the same as described previously (the element contents are retrieved,
they are modified, and then returned to the GlobeDoc object), except that all putContent

methods now require a valid checkout id for the elements being modified. Finally, once
the modifications are complete, the locks on the elements must be released by checking
the elements back in (invoking the checkInElements method). An element may only be
checked out once at any given time (that is, invoking checkOutElement more than once for
the same element without first checking that element back in will result in an error).

This mechanism prevents concurrent modifications of an element from overlapping
because it prevents elements from being checked out by more than one client at once. In
the example, client B would therefore have to wait until client A was finished with element
X before it could successfully check the element out for its own use. This mechanism may,
however, fail if the order of operations is modified (for example if a client only checks
an element out before returning it to the GlobeDoc object, but not before retrieving its
contents).

A serious drawback of this approach is that there is currently no way for a checkout
to time out. Thus if a client crashes shortly after checking an element out, but before
checking it back in, that element will remain checked out indefinitely, and will become
unmodifiable.

Another problem arises when this approach is applied in a distributed environment.
Because replication of a GlobeDoc object’s synchronization data (e.g., which elements
are checked out and their checkout ids) follows the same strategy as replication of its state
data, the checkout mechanism may work differently depending on the actual replication
and coherence policies used. For example, if state at different replicas is not kept strictly

62 CHAPTER 3. THE GLOBEDOC APPROACH

consistent it becomes possible for an element to be checked out by more than one client
at a time.2

3.2.3 Persistent and Transient GlobeDoc Objects

A GlobeDoc object’s state consists of all its elements, their associated properties and any
other relevant data (such as locking data, incarnation ids, etc.). As with all Globe objects,
a GlobeDoc object’s individual LRs are responsible for storing this state and within an
LR it is the semantics subobject that is responsible for storing that state. An object’s state
can be persistent or transient. An LR that stores persistent state is required to retain its
state across (restarts of) the process hosting it. In practice, this means that an LR whose
hosting process is brought down and restarted will have the same state before and after
the restart. An LR that stores transient state, on the other hand, loses that state when the
process hosting it is shut down or ceases to host that LR for some other reason. An LR
containing persistent state is called a persistent LR, while one containing transient state
is called a transient LR.

As an example, consider a persistent LR where state is added shortly before the host
process is brought down. When the host process is brought back up and the LR recreated,
the LR will contain the same state as it did before the process was brought down. De-
pending on its replication policy, this LR could continue processing requests from clients
without having to reinitialize its state. A transient LR, however, would lose all its state
when it was recreated, and would first have to transfer a copy of the state from another
LR before being able to process client requests.

Persistent LRs generally require the availability of persistent contact addresses to op-
erate. A persistent contact address is one that always refers to a particular LR’s contact
point and is independent of the LR’s hosting process. It allows a persistent LR to regis-
ter itself once with the location service, and not have to worry about re-registering itself
again (for example, if it is ever restarted). A persistent connection is similar to a persis-
tent contact address in that it is a connection to an LR that remains valid independent of
the process hosting the LR. Thus, a client connected to an LR over a persistent connection
does not have to create a new connection if that LR’s host goes down and it has to be
restarted in a new process.

Whether a whole GlobeDoc object is persistent or transient depends on whether its
LRs are persistent or transient. A transient GlobeDoc object always has transient LRs. It
is, however, possible to have a mixture of transient and persistent LRs within an object.
In this case, as long as the object contains at least one persistent LR, the whole object will
remain persistent.

Note that a persistent GlobeDoc object is not necessarily a fault-tolerant object. This
means that a persistent GlobeDoc object’s state is not guaranteed to be maintained if the
object goes off-line due to a fault rather than a controlled shutdown. Fault tolerance is a

2This may, however, be a problem with the underlying Globe system as it does not make it clear whether an
object’s underlying distribution policy is allowed to impact the semantics of the object’s interfaces. Either way
this shows that the distribution issues are not completely hidden from the designer and implementor of Globe
semantics subobjects.

3.2. GLOBEDOC MODEL 63

property that must be added independently of persistence. It may, for example, be possible
to have fault-tolerant transient objects, as long as the fault tolerance guarantees that an LR
containing the object state will always be available.

An implementation issue somewhat related to persistence is whether the GlobeDoc
semantics subobject should store its state in main memory or secondary storage. The for-
mer allows for quicker access to the GlobeDoc object’s elements, however it also imposes
a limit on an object’s size (namely the amount of main memory available). On the other
hand, storing the state in secondary storage allows larger objects, which complicates the
GlobeDoc interface by making it feasible to store very large elements. The methods for
reading and writing state must therefore take into account that the state they are reading
or writing may be larger than the available memory, making it necessary to present that
state in blocks. This leads to the introduction of the block-wise read and write methods
described earlier.

3.2.4 Naming and Binding

To gain access to a GlobeDoc object a client must bind to that object given the object
name. Each GlobeDoc object is identified by one or more location-independent human-
friendly names. As in Globe, a GlobeDoc object may have multiple names, however, any
single name always refers to a single object at any one time. These object names form
part of a global GlobeDoc name space.

The organization of the GlobeDoc name space is similar to that used in, for example,
UNIX file systems. The name space is organized as a hierarchical rooted tree in which
an interior node represents a directory, and a leaf node represents a GlobeDoc object.
Every edge is labeled with the (simple) name of the node it points to and an object name
is composed of a sequence of the labels representing a path in the name space. As in
UNIX, the labels are separated by a slash (“/”). An absolute object name, that is, one
that represents a path starting at the root of the name space, always begins with a slash.
GlobeDoc object names are always absolute. When used in the Web, GlobeDoc object
names follow the Uniform Resource Identifier (URI) syntax and are preceded by a globe:
scheme identifier. For example, the GlobeDoc object name /nl/vu/cs/object/foo becomes
globe://nl/vu/cs/object/foo in a Web environment. A GlobeDoc object name represented
as a URI in this way is a Uniform Resource Name (URN) and is called a GlobeDoc URN.
Resolving object names is done in the usual (iterative or recursive) way and results in the
object handle of the object to which the name refers.

Like GlobeDoc objects, elements within the objects are also named. Each GlobeDoc
object contains a separate name space for its elements, which means that element names
are valid only in the context of their encompassing GlobeDoc object. Thus, to refer to a
GlobeDoc element both the object and element names are required. Unlike the GlobeDoc
name space, however, GlobeDoc does not impose any rules or structure on the individual
element name spaces. Element names can, for example, reflect the GlobeDoc name space
and be arranged in a rooted hierarchy, or they could be hexadecimal strings representing
the hashes of the elements themselves. Generally it is up to the clients responsible for
adding elements to choose suitable element names. A suggested approach is to mimic the

64 CHAPTER 3. THE GLOBEDOC APPROACH

naming of Web resources in the current Web and name elements as though they were files
in a file system (e.g., /main.html, images/image1.gif, etc.)

Although it does not impose a structure on the element name space, a GlobeDoc object
does allow one element to be assigned as the root element. Assigning an element as the
root element gives it a function similar to the index.html file in many Web servers. It
marks that element as an entry point into the GlobeDoc object.

For convenience, it is possible for a GlobeDoc URN to contain both a GlobeDoc object
and an element name. In this case the element name is separated from the object name by
a colon (“:”). The URN globe://nl/vu/cs/object/gdObject:/element.html, for example,
refers to an element named /element.html in a GlobeDoc object named /nl/vu/cs/object/
gdObject. A GlobeDoc URN with an empty element name implicitly refers to the root
element. Note that a client can only ever bind to a particular GlobeDoc object and not to a
specific element. To access the element referred to by a GlobeDoc URN a client must first
bind to the specified object and then retrieve the element by invoking appropriate methods
on the GlobeDoc object.

For integration in the current Web, GlobeDoc URNs can be embedded in HTTP
URLs, for example as http://globe.cs.vu.nl/nl/vu/cs/object/gdObject:/element.html.
The server name part of the HTTP URL (globe.cs.vu.nl) refers to a GlobeDoc-aware
HTTP server that, given the object and element names, can bind to the object and retrieve
the named element. The GlobeDoc access point (which is described later) is an example
of such a server. These URLs with embedded GlobeDoc object and element information
are called embedded URNs.

GlobeDoc objects and GlobeDoc elements are often referenced by hyperlinks. As
mentioned earlier, there are two types of hyperlinks in GlobeDoc: internal and external.
Internal hyperlinks are represented by relative URNs (i.e., ones that contain only an ele-
ment name) and refer to elements inside the same GlobeDoc object. External hyperlinks
are represented by absolute URNs (i.e., ones that contain both an object name and an
element name) and can refer to either internal or external elements.

3.2.5 Alternative Models

Before deciding on the GlobeDoc model described above, other approaches to mapping
the Web onto Globe were also considered. The purpose of this section is to present an
overview of these other approaches and discuss why they were rejected. The discussion
will help shed light on the design decisions that led to the current model.

Fine grained object model

The most straightforward approach to creating an object-based model of the Web is to
model every Web resource as a separate object. Such a model introduces separate object
classes representing resources such as HTML documents, plain text documents, images,
video streams, etc. Each such class implements and exports a resource specific interface.
The major benefit of this approach is that each resource can determine its own distribution
policy and be replicated (or partitioned) as needed. A secondary benefit is that resources

3.2. GLOBEDOC MODEL 65

may offer interfaces and methods particularly suited to their needs. For example, besides
simply providing a method for retrieving an HTML object’s contents, an HTML object
could also provide methods that parsed the HTML and returned a list of links and images
contained in the document.

A major drawback of this approach is that it leads to objects that are too fine grained
for Globe. Because it requires clients to bind to every Web resource they use, this ap-
proach results in a large number of bindings for every Web page accessed (considering
that a client has to bind to the HTML object, then to each embedded image and possibly
to even more HTML objects embedded in frames). Being a heavyweight operation (re-
quiring contacting a number of external services as well as retrieving and loading code),
binding to objects too often would lead to a noticeable performance degradation.

Besides the binding problem, this model also fails to take advantage of the strong
relation between HTML pages and their embedded elements. When an HTML page
is downloaded there is a strong possibility that related (embedded) images will also be
downloaded. By explicitly including this relation in the Web model (as we do in Globe-
Doc) this relation information can be taken advantage of to download all related elements
in parallel as soon as one of them is requested. Furthermore, including this relation in-
formation allows related elements to be replicated together at the same locations, which
greatly improves the efficiency and performance of the resulting model.

A final problem with this model is that it is difficult to integrate into the existing Web.
In order to take advantage of the possibilities offered by this approach, clients must be
aware of and make use of the interfaces offered by all the various classes of resource
objects. It is possible to mask this abundance of interfaces using proxies or gateways to
translate between HTTP and the various object interfaces, however, this looses much of
the flexibility gained by offering each resource its own interface in the first place.

HTTP model

A different approach is to concentrate on Web protocols rather than on Web resources.
This approach requires objects to implement interfaces that resemble existing protocols.
Thus, for example, an object exporting an HTTP interface allows a client to invoke GET,
PUT and POST methods on it. An object exporting such an interface could represent a sin-
gle Web resource, a Web document or a collection of, possibly unrelated, Web documents.

Unfortunately, simply defining interfaces does not make for a complete model; an
underlying object model is still required. The drawbacks of having an object represent a
single resource have been discussed above. Having an object represent multiple unrelated
Web documents, on the other hand, tends towards one-size fits all distribution policies,
and as was shown earlier, this is not beneficial to the goal of improving Web performance.
Finally, choosing a model where objects represent Web documents leaves us with a model
very similar to the GlobeDoc model, the main difference being the syntax of the methods
offered by the interfaces.

The main difference between the GlobeDoc and HTTP interfaces is that GlobeDoc
lacks a counterpart to the POST operation. In HTTP, the POST operation allows a client
to send extra data along with a request for a resource. Usually, this data comes as a result

66 CHAPTER 3. THE GLOBEDOC APPROACH

of some user interaction (such as filling in forms) and is used by the receiving end to
dynamically generate a reply. The fact that GlobeDoc does not have an equivalent to
this operation means that GlobeDoc cannot offer full support for dynamic contents (i.e.,
content that is partly or wholly generated upon being requested).

The decision not to directly support dynamic content in GlobeDoc was deliberate,
and not due to an oversight. The following two alternative models represent attempts at
including dynamic content in the GlobeDoc model. The reasons for rejecting these models
will highlight the reasons for choosing a purely static model for GlobeDoc content. Note
that this does not mean that GlobeDoc can not be used for Web sites and documents that
require dynamic content. Chapter 7 will discuss a possible GlobeDoc-based approach for
handling dynamic content.

Composite Distributed Shared Objects

A first attempt at designing GlobeDoc objects that supported dynamic content is to con-
sider composite DSOs. Composite DSOs are DSOs that contain (references to) other
DSOs as part of their state. In this model a GlobeDoc object’s elements are modeled as
separate DSOs, while a GlobeDoc object acts as a container for these DSOs. The goal of
the GlobeDoc object is to provide access to its elements’ interfaces. These interfaces are
regular Globe interfaces and allow a client to invoke methods on an element object.

Because it also models every Web resource as a separate DSO, the composite DSO
model resembles the fine-grained object model described above. The difference between
the two, however, is that in the composite DSO model, it is the GlobeDoc object and not
the client that binds to all the element objects. This avoids the problem, discussed earlier,
of a client having to bind to multiple objects to access a single Web page. In this case, the
GlobeDoc object is responsible for performing the binding and may bind to all its elements
during initialization to avoid the performance degradation associated with binding to the
objects on demand. Although the GlobeDoc object can influence the (time and place of)
creation and destruction of element replicas, it cannot influence the distribution policies
of its individual element objects. This means that the element objects, although they are
managed by a GlobeDoc object, remain fully independent Globe objects.

Modeling GlobeDoc using composite DSOs allows for dynamic content, because the
individual elements can be either static or dynamic objects. That is, they can either contain
static state that is returned by appropriate methods, or they can contain state that is used
to generate responses dynamically for every request. For example, Perl CGI scripts could
be stored in a Perl CGI object which executes the script every time it is accessed.

The greatest obstacle to this approach, however, is caused by replicated invoca-
tions [11]. Replicated invocation occurs when a replicated object invokes the methods
of another replicated object. The major problem with replicated invocation is that each
replica of the source object may invoke the method on different replicas of the target ob-
ject. The target must be able to recognize and deal with these replicated invocations (i.e.,
it cannot treat them as separate and independent method invocations). Replicated invo-
cations can cause a number of problems if not handled properly. First of all, depending
on an object’s replication policy, the method may end up being executed more often than

3.3. REPLICATION POLICIES 67

intended resulting in potential state corruption (for example, an increment method that
is called too often will result in inconsistent state). Secondly, it is possible that differ-
ent replicas return different responses (for example, due to side effects of the method)
whereas in a replicated invocation all invocations should return the same response. Fi-
nally, depending on the replication policy, a replicated invocation may cause an explosion
in the amount of messages sent between the two objects and an object’s LRs. No general
wide-area scalable solution to the problem of replicated invocation has yet been found.

Lightweight Distributed Shared Objects

An attempt to overcome the replicated invocation problem of composite DSOs led to the
design of lightweight DSOs. A lightweight DSO is similar to a composite DSO, except
that the element objects are not actually independent Globe objects. Instead a single
semantics object implements all of the required element types (e.g., the most commonly
used Web resource types) and exports their interfaces. Clients who wish to access these
elements acquire the appropriate interface and invoke methods as though the elements
were separate objects.

It is clear that in this approach the problem of replicated invocations is no longer an
issue because we no longer deal with separate objects. Similarly, the state of the related
objects is always replicated in the same places and in the same ways, thus the relation
between GlobeDoc elements is built into the model. However, the major drawback of this
approach is that it limits the element types that a GlobeDoc object can contain. This loss
of flexibility is unacceptable for GlobeDoc and is the primary reason for rejecting this
model.

3.3 Replication Policies

Although applying an appropriate replication policy is an important aspect of creating
scalable GlobeDoc objects, the research performed did not focus on designing and imple-
menting the policies themselves. Instead the goal was to design and build an architecture
that supported the flexible application of replication policies. The topic of designing and
choosing appropriate replication policies will be revisited in Chapter 7.

3.4 GlobeDoc System Architecture

3.4.1 Overview

Implementing Web documents as Globe DSOs requires structural support for the DSOs.
This support includes providing address spaces for LRs, providing access to the services
used during binding (i.e., naming service, location service, etc.), and providing a means
to access objects from clients such as Web browsers. Figure 3.5 shows an infrastructure
that provides support for GlobeDoc-unaware clients (e.g., standard Web browsers).

68 CHAPTER 3. THE GLOBEDOC APPROACH

GlobeDoc Access Point

Object Server

Proxy

Translator Gateway

Location ServiceNaming Service Implementation
Repository

C

region A1

B2
B1

A0

A1
A2

B0 C0

C1

PB
PCPA

R

region A0 region A2

region B1

region B0

region B2

region C0

region C1

region PA region PB region PC

region R

DSO

Network

Path B

Path A

Figure 3.5: The GlobeDoc infrastructure.

3.4. GLOBEDOC SYSTEM ARCHITECTURE 69

In path A of this diagram a client sends an HTTP request for an embedded URN to
a GlobeDoc access point (GAP). The GAP is responsible for interpreting the request,
binding to the appropriate GlobeDoc object and returning the requested element. In path
B, the client sends all of its HTTP requests to a GlobeDoc-aware proxy. This proxy filters
out GlobeDoc requests (i.e., GlobeDoc URNs or embedded URNs) from other requests,
forwarding GlobeDoc requests to a local GAP, and handling other requests in the normal
way. A third possibility, shown in Figure 3.6, is that a GlobeDoc-aware client binds
directly to an object allowing the client to invoke methods directly on that object. The use
of GlobeDoc-aware clients will be described later.

Object Server

Location ServiceNaming Service Implementation
Repository

C

region A1

B2
B1

A0

A1
A2

B0 C0

C1

PB
PCPA

R

region A0 region A2

region B1

region B0

region B2

region C0

region C1

region PA region PB region PC

region R

DSO

Network

Figure 3.6: GlobeDoc-aware client binding directly to object.

The GlobeDoc access point is a combination of two servers, the GlobeDoc translator
and the GlobeDoc gateway. The translator accepts requests for embedded URNs, trans-
lates them to GlobeDoc URNs and forwards the requests to the gateway. The gateway, in
turn, accepts the request for a GlobeDoc URN and binds to the object referred to in the
URN. Binding to the object causes an LR to be created in the gateway’s address space.

70 CHAPTER 3. THE GLOBEDOC APPROACH

Once it is bound to the GlobeDoc object, the gateway invokes methods on the object’s
LR to retrieve the requested element. In processing the method invocations the LR will
generally communicate with one or more of its LR peers. Note that whether this commu-
nication actually takes place, and the details of any communication that does take place, is
dependent on the replication policy implemented by the LR’s replication subobject. When
the gateway has retrieved the complete element from the GlobeDoc object, it returns the
element to the translator, who passes it on to the client (path A) or the proxy (path B).

3.4.2 The Architecture Elements

Naming and Location

The naming service implements a name space for all GlobeDoc distributed objects by
mapping object names onto object handles (which act as unique object identifiers).
Whereas object handles and the contact addresses that they resolve to are intended for
automated processing only, GlobeDoc object names are user-defined and human-readable
character strings similar to domain and file names. As in Globe, there is an N-to-1 rela-
tionship between these names and object handles, that is, different names can refer to the
same object handle, but each name refers to exactly one object handle.

The current name space implementation is largely based on DNS [66] name servers.
In this implementation it is assumed that the root as well as (hierarchically) higher-level
nodes in the name space correspond to regular DNS domains. In theory, leaf nodes (which
represent actual DSOs) as well as lower-level interior nodes also correspond to DNS do-
mains, but these are implemented in a Globe-specific way. Such Globe domains, (i.e.,
Globe-specific as opposed to regular DNS domains) are implemented by Globe domain
servers.

To adhere to DNS naming syntax, a GlobeDoc object name such as /nl/vu/cs/object/
foo is transformed into foo.object.cs.vu.nl. When resolving it, this transformed name
is passed to a DNS resolver as though it were a regular domain name. Name resolu-
tion proceeds as normal and eventually reaches a Globe name server (e.g., the server for
object.cs.vu.nl). The Globe name server recognizes the full GlobeDoc name (foo.object.
cs.vu.nl) as an object name and resolves it to the appropriate object handle. More details
about the name service and its implementation can be found in [13].

After the name service resolves a GlobeDoc object name to an object handle, the
Globe location service further resolves the object handle to one or more contact ad-
dresses. In GlobeDoc, the protocol identifier part of a contact address contains an im-
plementation handle. An implementation handle identifies an LR implementation that
can be used to contact the object, and data (such as the actual network address of the
contact point) used to initialize the LR.

Implementation repository

The implementation repository is a service that stores LR implementations and makes
them available to binding clients. These implementations are stored and transferred as
class archives, which are files that contain all the implementation code needed by an LR.

3.4. GLOBEDOC SYSTEM ARCHITECTURE 71

Storing the entire implementation of an LR in a single class archive makes its transporta-
tion and management easier compared to having multiple files. In our implementation, a
class archive is a Java jar file and contains the Java class files that form an LR implemen-
tation.

When an LR implementation is registered at the implementation repository it is as-
signed an implementation handle. The implementation handle is placed in a contact ad-
dress and subsequently used by a binding client to retrieve (copies of) the implementation.
An implementation handle is an opaque identifier that is generated by the implementation
repository.

Currently, only file: URLs are supported as implementation handles, that is, a handle
simply contains the path name of a locally available class archive file. Other schemes,
such as those based on ftp: or http: URLs, may be preferred for a wide-area system such
as the Web. Support for these URLs has not yet been implemented.

Better than URLs, however, are logical names such as URNs, which are globally
unique and location transparent. Location transparency has the benefit of allowing one
to easily set up a distributed implementation repository without the drawbacks of having
to make its distribution visible to the users (as is the case with URLs). For example, it
becomes easier to move or replicate class archives without affecting their name as known
to users (or stored in contact addresses).

Besides location transparency, URNs also have the benefit of not having to refer to
specific class archive files. In other words, a URN can be used as a specification for an
implementation type. When an implementation handle specifies such a type, the imple-
mentation repository is given the freedom to choose an appropriate class archive for the
requesting client. A class archive in this sense acts as an instance of the implementation
type of the LR. The choice for a specific class archive could, for example, be influenced
by the particular platform of a client, or by security requirements. In this way, clients
binding to Globe objects can keep control over the code loaded into their address spaces.

Globe Object Server

The Globe object server hosts nonclient LRs, providing them with an address space, con-
tact points, and runtime services. A Globe object server generally runs as an independent
process, which means that it is not integrated as part of a client. Clients and other services
that offer address spaces and runtime services to GlobeDoc objects will be described later.

A Globe object server can provide a number of different services (such as persistence
support, fault tolerance and security facilities, access to local resources, etc.) to the LRs it
hosts These services can also be offered at different levels with different guarantees. It is
important that LRs are hosted at object servers that provide the services that they require
at the levels they require.

Object Server Management Interface Besides simply hosting LRs, the Globe object
server also has a remotely accessible interface that allows LRs, other Globe object servers,
or administrators to request services from it.

72 CHAPTER 3. THE GLOBEDOC APPROACH

This object server management interface (OSMI) is accessed through an RPC-style
protocol. It provides functions that allow (object server) clients to request the object server
to bind to a specific DSO. Such a bind request causes the Globe object server to bind to
the given DSO, resulting in an LR of that DSO being created in the Globe object server’s
address space. This function is generally used to install object replicas at object servers.
An object server can also be requested to unbind from a DSO. In this case all LRs of that
DSO which are hosted by the object server are removed from the server’s address space.

The OSM interfaces also provide functions that allow objects to be created or de-
stroyed. A creation request is handled similarly to a bind request, except that no name
or location lookup is performed, an LR is simply created given an implementation handle
and then registered with the location service. The object server does not register a name
for the object, it is up to the client to do that. A request to destroy a DSO can be fulfilled
only if the object server hosts the only existing LR of that DSO. Destroying a DSO in-
volves destroying all of the DSO’s LRs and then unregistering them and the object handle
from the location service. Once again, unregistering the object’s name (if any) must be
done by the client.

Address Space Providing an address space for LRs is straightforward; LRs are passive
objects, which means that they do not have an active thread of execution. The Globe
object server, therefore, simply needs to provide memory to load the LR code. Memory
management is currently handled by the local garbage collector. In addition, the server
provides the runtime support needed by LR implementations. For example, a Java virtual
machine and accompanying runtime library are needed to support Java implementations
of LRs.

Although LRs are not active objects, they do require thread management facilities. For
example, a thread is started whenever a message comes in from another LR. The thread
facilities are provided by the runtime system.

Contact Points An important property of an LR is that it communicates with other LRs
and possibly other services. This means that an object server must provide an LR with
access to the network. Besides simply allowing LRs read and write access to the network,
an LR must be allowed to create contact points. As mentioned earlier, a contact point is
where an LR can be contacted by its LR peers. A contact point is represented by a contact
address and registered at the location service. The object server’s runtime system provides
services for creating, managing and destroying contact points.

Because contact addresses are made publicly available through the location service, it
is possible that a contact address survives longer than the object server that provides the
associated contact point. Some LRs may require their contact points to be persistent, that
is, they may require their contact points to remain valid over multiple restarts of the object
server hosting them. It is up to the object server to make sure that the contact addresses
for such contact points will always refer to the same (logical) contact point.

3.4. GLOBEDOC SYSTEM ARCHITECTURE 73

Access to external services The naming service, location service and implementation
repository are all external services, that is, they are implemented outside of the Globe
object server. Because LRs (and other runtime system components) can access only re-
sources in the Globe object server’s address space, the runtime system provides local
proxies to the external services. These proxies, called resolvers, provide local interfaces
through which the external services can be used. They can be implemented as simple
proxies that forward all requests and replies to and from the actual services, or they can
be more complex, storing and manipulating their own local state (e.g., to cache results).
The latter are often used to improve system performance. Performance of access to ex-
ternal service is important because it can greatly affect the overall performance of the
client-to-object binding process.

Support for binding The Globe object server also provides facilities needed for bind-
ing. These are encapsulated in a binder object, a local object that is part of the runtime
system. As discussed earlier, binding to a GlobeDoc object consists of at least three steps:
(i) name resolution, (ii) object handle resolution, and (iii) loading and initialization of an
LR. Normally, binding starts at the first step. It is, however, possible to begin binding at
any other step, as long as the information needed by that step is present. For example,
to start binding at the second step, a client would need to have an object handle to pass
to the location service. A Globe object server might store an object handle as previously
returned in the first step to avoid a name lookup when it is later requested to bind to that
same object again.

When a Globe object server is requested to unbind from a DSO its LR for that DSO
has to be disconnected from the rest of the DSO. The process of disconnecting an LR
from the rest of a DSO is generally object specific. For example, in some cases it may be
necessary to migrate the LR’s state to another Globe object server, while in other cases,
it may be safe to simply discard the state because the LR is, in fact, a replica. Also, if
the Globe object server was offering a contact address for the DSO, the corresponding
contact addresses would have to be removed from the location service. Therefore, when
unbinding from a DSO, we assume that the DSO implements its own disconnection al-
gorithm. When the LR has been disconnected, the server simply reclaims local resources
and removes the LR from its address space.

Local resources A Globe object server must also manage local resources such as sec-
ondary storage, memory, network access, etc. The runtime system manages access to
many of these low-level resources through standard platform-independent interfaces and
abstractions such as communication points (e.g., sockets) and persistent storage (e.g., files
on disk). Memory management is done partially through language-specific mechanisms
(such as malloc() and free() in C or garbage collection in Java) as well as garbage col-
lection of unused LRs and other Globe-specific constructs. The object server must also
manage the number of active (that is loaded in memory) LRs, so that they do not take up
all available memory. For example, if the LRs start taking up too much memory, then the
object server may decide to remove (unbind) or suspend, the least active ones. Likewise,

74 CHAPTER 3. THE GLOBEDOC APPROACH

communication resources may also be limited (e.g., a limit on the number of open sockets
per process) and the object server will have to manage use of these as well.

Clients

GlobeDoc clients are programs that access GlobeDoc objects. They can be used to access
(and view) the contents of GlobeDoc objects, or to manage and modify a GlobeDoc ob-
ject’s contents. There are two types of clients: GlobeDoc-aware and GlobeDoc-unaware
clients. GlobeDoc-aware clients are those that can directly bind to GlobeDoc objects and
invoke their methods. These clients are built with Globe runtime support and are capable
of loading and hosting GlobeDoc LRs in their address space. These clients also recognize
GlobeDoc URNs and can properly interpret them. Generally GlobeDoc-aware clients are
custom made, or custom-modified programs.

GlobeDoc-unaware clients, on the other hand, do not know anything about Globe-
Doc. They cannot bind to or invoke methods on GlobeDoc objects, nor do they understand
nor can they interpret GlobeDoc URNs. Generally GlobeDoc-unaware clients are exist-
ing programs such as Web browsers and other Web-based tools. These clients can only
access GlobeDoc objects through a GlobeDoc-aware HTTP server, such as provided by a
GlobeDoc access point.

GlobeDoc Gateway

A GlobeDoc gateway is a gateway between GlobeDoc-unaware clients and GlobeDoc
objects. It provides an interface through which clients can bind to a GlobeDoc object and
call its methods. This can take the form of a dedicated RPC-style interface, or a server that
accepts custom HTTP requests from clients. Upon receiving a request (either via an RPC
or HTTP) the gateway binds to the appropriate object, invokes methods on that object,
and returns any results to the requesting client.

A gateway is similar to the Globe object server, except that it supports only client
LRs. Client LRs are similar to regular LRs, except that they cannot be bound to. This
means that they do not provide any contact points and are therefore not registered with the
location service. Because of this, a gateway does not provide contact points.

Another difference between the gateway and the object server is that the LRs hosted
by a gateway are short-lived. Whereas the LRs hosted by an object server are usually
created as somewhat permanent replicas, LRs hosted by a gateway usually function as
a simple access point to GlobeDoc objects. The gateway generally binds to an object,
invokes some of its methods, and then unbinds from the object. Note, however, that it
is not always wise to immediately unbind from a DSO once a client request has been
satisfied. Consider, for example, a GlobeDoc gateway that has just bound to a DSO in
order to retrieve an element for a client. In the same style as HTTP, the gateway could
decide to immediately unbind from the DSO as soon as it has received the element from
the object. However, if the client immediately request another element from the same
object, it would have been much more efficient to stay bound to the DSO, anticipating
more requests for that object. In effect, a gateway can decide to cache bindings for later

3.4. GLOBEDOC SYSTEM ARCHITECTURE 75

use. In our current implementation, which supports only passive Web documents, the
effects of caching bindings turns out to be comparable to that of traditional Web caches.

Translator and Redirector

Ideally, users should be able to use regular Web browsers to access GlobeDoc Web doc-
uments. Unfortunately, current browsers are incapable of resolving GlobeDoc URNs as
they do not understand globe: URI scheme identifiers. One way around this problem is
to use GlobeDoc-aware proxies. These are Web proxy servers that filter out GlobeDoc
requests and send them to a (local) GlobeDoc gateway. Any results from the gateway are
returned to the user’s browser through the proxy. Non-GlobeDoc requests are passed to
appropriate servers.

A disadvantage of the proxy approach is that all requests from the browser (including
nonGlobeDoc requests) may be forwarded through the proxy. As a result, the proxy must
be able to handle all the various kinds of schemes supported in URLs, or be able to forward
them to a proxy that can. Another problem is that in order to use a proxy a user’s browser
must be configured to forward requests to the proxy. Users who have not configured their
browsers to use an appropriate proxy, will not be able to access GlobeDoc content.

A different approach to integration with the Web makes uses of a GlobeDoc trans-
lator. This component translates GlobeDoc URNs to embedded URNs and vice-versa.
As mentioned earlier, an embedded URN is a regular HTTP URL that contains an object
name and a GlobeDoc-aware HTTP server address, such as http://globedoc.cs.vu.nl/nl/
vu/cs/foo/object. When an embedded URN link is clicked in the browser, an HTTP re-
quest for the embedded object name is sent to the server whose address is contained in
the URL. When using the translator, this address will refer to a GlobeDoc translator. This
translator converts the embedded URN into a GlobeDoc URN and forwards the request to
a local GlobeDoc gateway. The gateway binds to the object and retrieves an element as
usual, passing the results back to the translator. At the translator, the element is scanned
and each instance of a GlobeDoc URN is rewritten to contain an equivalent embedded
URN. The modified element is then passed on to the browser.

A problem with the translator and embedded URN approach is that the translator ad-
dress is embedded in the resulting URL. Although this is not a problem for users close
to the translator, this may be a problem for users further away. Not only does this in-
troduce extra latencies, but it may also cause a problem for translators whose address is
included in embedded URNs of popular GlobeDoc objects. The essence of the problem is
that embedded URNs are not location independent, they contain the address of a specific
translator.

The GlobeDoc redirector, an HTTP server that redirects clients to their nearest trans-
lator, attempts to solve this problem. When using a GlobeDoc redirector, published em-
bedded URNs contain the redirector’s address rather than a translator’s address. Requests
for such embedded URNs are, therefore, sent straight to the redirector. Upon receiving a
request, the redirector finds a translator close to the client, and tells the client to send its
request to that translator. The nearest translator is defined as the one that is nearest to the
client in terms of geographic distance. To compute this distance, the IP addresses of the

76 CHAPTER 3. THE GLOBEDOC APPROACH

client and known translators are mapped to physical locations (i.e., latitude and longitude
coordinates). Note that embedded URNs returned by the translator, do not contain the
redirector’s address. This allows subsequent requests to be directed straight to the closest
translator.

Although the redirector is a centralized service and presents a potential bottleneck, it
is only used the first time a client accesses a GlobeDoc object. Afterwards, the translator
will ensure that all embedded URNs reference itself, and the redirector will not be used for
that GlobeDoc object. The redirector is also a temporary solution, allowing GlobeDoc-
unaware clients to access GlobeDoc objects and maintain the locality that is necessary
for performance. Ideally clients would be GlobeDoc-aware and bind directly to Globe-
Doc objects, avoiding the redirector, gateway and translator, which are all mechanisms
intended to make integrating GlobeDoc with the current Web possible.

Globe Infrastructure Directory Service

As we have seen, the use of Globe and GlobeDoc requires a number of external services
(naming service, location service, object server, gateway, translator, etc.). Finding these
required services may not always be trivial. For example, a translator forwards requests
to a gateway and although the gateway may run on the same machine as the translator,
this is not required. Ideally when the translator starts, it should be able to dynamically
find its nearest gateway. Likewise, all Globe processes make use of the location service.
To use the location service they must contact an appropriate location service leaf node.
Determining which node that is is not always trivial and should be done dynamically
when the process starts. Similarly, when creating an object’s replicas, appropriate Globe
object servers must be found. What constitutes an appropriate server depends on the LR’s
resource and location requirements (e.g., what resources the LR will use, and where the
LR should be located).

The Globe infrastructure directory service (GIDS) is a system for managing the
resources and services made available by a world-wide distributed collection of Globe
object servers and other Globe and GlobeDoc services. GIDS allows servers to register
their resources, services, and other properties while providing clients an efficient search
facility for locating the servers and services they need.

In GIDS, a distinction is made between local resource management and global re-
source management. Local resource management deals with managing resources and
services within a base region. A base region represents a small geographical or network-
topological area containing a group of servers (e.g., Globe object servers, a GAP, a loca-
tion service leaf node, etc.). It is the smallest unit of proximity known to GIDS. In other
words, if two processes are in the same base region, GIDS will consider them as being at
the same location.

Global resource management deals with grouping the information from base regions
into larger units, and making that information available to clients. In particular, global
resource management deals with globally tracking resources and services, and providing
efficient search facilities for clients, regardless of a client’s location.

GIDS is described in detail in Chapter 5.

Chapter 4

GlobeDoc Architecture Details

The previous chapter introduced the GlobeDoc model and the main elements of the as-
sociated architecture. This chapter continues where the previous one left off and looks
deeper into the design and implementation of those architectural elements. In particular,
it includes a discussion of the Globe object server, the implementation repository, Globe-
Doc clients, and GlobeDoc cache servers. These are architectural elements and issues that,
although generally applicable to other Globe applications, are of particular importance to
GlobeDoc.

4.1 Object Server

As mentioned earlier, the object server is a process that hosts local representatives of
GlobeDoc objects. It allows LRs to be installed on it, provides them with an address
space in which to run their code and gives them access to run-time services such as mem-
ory management, persistence support, and a local name space. The object server also
provides access to local storage and network resources as well as access to external ser-
vices such as the naming and location services. This section will describe the design and
implementation of the Globe object server.

Because it was designed as a general Globe service, the object server supports any
kind of Globe object, not just GlobeDoc objects. As such, the text in this section will
refer to generic Globe objects rather than specifically to GlobeDoc objects. Where pos-
sible particular details regarding the applicability to GlobeDoc and GlobeDoc-specific
examples will be provided.

Figure 4.1 shows the object server’s internal structure. In this figure the object server’s
functionality is divided into separate functional components. The object server manage-
ment component provides an entry point through which object-server clients can invoke
management operations on the object server. It provides an interface that allows clients
to create and destroy LRs as well as access information about LRs hosted on the ob-
ject server. The LR management component is responsible for creating and destroying

77

78 CHAPTER 4. GLOBEDOC ARCHITECTURE DETAILS

LRs as well as keeping track of the LRs that the object server hosts. This component
is also responsible for the functionality required to activate and passivate persistent LRs.
The Globe runtime services component provides all the services required by a standard
Globe-aware application. These include providing access to local and remote services
such as a binding service, the name service, the location service, and an implementation
repository. The local storage management component provides access to local storage
such as a local file system or a locally-accessed remote file system. This component is
also responsible for freeing and cleaning up unused storage space, as well as maintaining
persistently allocated storage space. The network management component provides
access to network resources such as communication and contact points. The following
sections will describe each of these components in more detail.

Object Server

Component

LR
Management
Component

Object Server Management Component

Globe Runtime

Component

Component
Management

Network

Services

Management
Local Storage

Figure 4.1: Structure of the Globe object server.

4.1.1 Object Server Management Component

The object server management (OSM) component provides clients with access to the man-
agement functionality provided by the object server. This functionality is defined in the
object server management interface as presented in Table 4.1. The OSM component
does not actually perform the actions defined in this interface, but simply coordinates
their execution and delegates calls to the other components. This management function-
ality can be accessed in two ways. The first way is locally through a shell interface that
the object server presents if it is run in interactive mode. The second way is using an ex-
ternal management client that contacts the object server and communicates with it using

4.1. OBJECT SERVER 79

an RPC-style protocol. Such a management client can be a special-purpose object-server
management client, but can also include regular clients that need to create or destroy ob-
jects, as well as objects themselves if the objects are able to create their own replicas.

The main functionality provided by the OSM interface is creation of LRs. There
are two ways that an object server can create LRs. The first is to bind to an already
existing Globe DSO and the second is to create an LR given an implementation handle
and initialization data.

There are three ways that an object server can bind to an existing Globe DSO. The first
way, represented by the bind method, binds to an existing object given its object handle.
This causes the object server to perform a location lookup to find an appropriate contact
address. Given a contact address the object server extracts the implementation handle,
loads the implementation into its address space and initializes it with initialization data
also extracted from the contact address. Contact address selection follows a strategy de-
fined in the property selector. Generally such a property selector defines which properties
of location service records are to be considered when searching for a contact address. If
the object server is already bound to the object identified by the given object handle, then
the bind operation is not performed.

The second way of binding to an existing DSO is represented by the bindCAddr method.
In this case the object server is given a specific contact address to bind to. The binding
process is similar to that followed in the bind method, except that it is not necessary to
contact the location service and search for a contact address.

The third way of binding to an existing DSO is represented by the addBinding method.
This method is similar to the bind method, except that the operation is performed even if
the given object is already bound to. In that case a call to this method results in an extra
LR, bound to the same object, being hosted by the object server. This method is generally
used when a user requires an LR with properties different from the currently hosted LRs
to be added to the object server. For example, this method may be used to cause the object
server to host an LR that provides more (or less) security guarantees than already-hosted
LRs.

The createLR method is generally used to create the first LR of a DSO. As such it
cannot be given an object handle or contact address to bind to because none exist. In-
stead the method is given an implementation handle and initialization data. The method
acquires the implementation code from an implementation repository, loads it into the
object server’s address space, instantiates the LR and initializes it with the given initial-
ization data.

All four of the above-mentioned methods return an LR identifier. This identifier is
an object server management specific identifier that can be used to identify a particular
LR in subsequent calls on the object-server interface. This includes calls to remove LRs
as well as calls to get more information about installed LRs. LR identifiers are also used
internally by the object server to keep track of LRs, for example, when keeping track of
resources used by an LR.

In all four methods it is possible to specify whether the LR should be persistent or not.
There are two methods for removing LRs. The first, removeLR, causes a given LR

to be removed from the object server. The LR identified by the given LR identifier is

80 CHAPTER 4. GLOBEDOC ARCHITECTURE DETAILS

interface objectServerOps

method bind Binds to a DSO given an object handle
in objectHandle The object handle to bind to
in oname The DSO’s name
in select Property selector used to select a contact address
in persistent Whether the installed LR should be persistent or not
returns An object-server specific LR identifier
method bindCAddr Binds to a DSO given a contact address
in objectHandle The DSO’s object handle
in oname The DSO’s name
in caddr The contact address to bind to
in persistent Whether the installed LR should be persistent or not
returns An object-server specific LR identifier
method addBinding Binds to a DSO (even if already bound to it)
in ohandle The object handle to bind to
in oname The DSO’s name
in select Property selector used to select a contact address
in persistent Whether the installed LR should be persistent or not
returns An object-server specific LR identifier
method createLR Creates and installs a DSO’s first LR
in ohandle The object handle to assign to the DSO
in oname The DSO’s name
in impl Implementation handle of the LR to create
in init Initialization string for the LR
in persistent Whether the installed LR should be persistent or not
returns An object-server specific LR identifier
method removeLR Removes an installed LR
in lrid The LR’s object-server specific identifier
method unbindDSO Removes all of a DSO’s installed LRs
in ohandle The DSO’s object handle
method listAll Lists the LRs currently installed in the object server
returns A list of LR identifiers
method listDSO Lists all of a DSO’s LRs currently installed in the object

server
in ohandle The DSO’s object handle
returns A list of LR identifiers
method statLR Returns the status of an installed LR
in lrid The LR’s object-server specific identifier
returns The status information

Table 4.1: Object Server Management Interface.

4.1. OBJECT SERVER 81

destroyed, freeing all resources it had in use. The second method, unbindDSO, removes all
of a given DSO’s installed LRs. This is an all-or-nothing operation, that is, either all LRs
are removed, or none are. Note, however that it is not a fault-tolerant operation, i.e., if the
object server were to crash while performing the operation no guarantees are made as to
which LRs have been removed and which have not.

Finally, there are three informative methods. The first method, listAll, returns a list of
the LR identifiers of all currently installed LRs. The second method, listDSO, returns the
identifiers of all LRs of a given DSO that are currently installed in the object server. The
third method, statLR returns information about a given LR installed in the object server.
The information returned includes the object handle of the DSO that the LR belongs to,
information about how the LR was installed (e.g., was this the first LR of the DSO, how a
contact address was chosen, etc.) and whether the LR is persistent or not.

4.1.2 LR Management Component

The LR management component is responsible for the creation and destruction of LRs
and keeping track of all hosted LRs. It also manages the activation and passivation of
persistent LRs as well as the saving and restoring of state that this involves.

In order to host LRs the object server must provide an address space and any system-
level support required by the LR implementations. Two important system facilities that
must be provided are thread management and garbage collection. Although Globe objects
do not have active threads of control, Globe does make heavy use of pop-up threads (for
example, in communication subobjects when accepting incoming messages). Because
operating systems often limit the number of threads available to a single process, the
object server has to make sure that it never uses up all its available threads. The object
server manages available threads by providing a pop-up thread pool. Threads are checked
out of the pool when needed and returned to the pool when no longer required.

The Globe model supports garbage collection through reference counting. In Globe,
local objects are accessed through counted references. Whenever a reference to a local
object is acquired the count of references increases. Whenever a reference is no longer
used it is released and the count decreases. When a local object’s reference count drops to
zero, the object is no longer referenced and can be removed. In some Globe environments
(such as a C implementation) the reference counting and object cleanup is implemented
as part of the Globe runtime system and does not rely on system-level support. In other
environments (such as a Java implementation) the reference counting and object cleanup
relies partially or wholly on system-level support. This reliance on system-level support
means that in some cases the exact behavior of certain processes (e.g., destruction of local
objects) may differ depending on platform and implementation. For example, in a Java
environment, an unreferenced local object will be cleaned up only when the Java garbage
collector is run. In a C environment, however, the local object may be cleaned up as soon
as its reference count drops to zero.

82 CHAPTER 4. GLOBEDOC ARCHITECTURE DETAILS

LR Creation

As mentioned previously there are two main ways that an object server creates LRs. The
first is by binding to an existing Globe DSO, corresponding to the OSM interface’s bind

methods, and the second is by creating a Globe object’s initial LR, corresponding to the
OSM interface’s createLR method.

Invoking the bind method results in the invocation of corresponding methods on the
Globe runtime system’s binder object (see Section 4.1.3). The binder object is respon-
sible for mapping the given object name, object handle or contact address to a corre-
sponding implementation handle and initialization data. The implementation handle and
initialization data are then passed on to the LR management component where the actual
LR creation takes place. Invoking the createLR method results in the implementation han-
dle and initialization data being passed directly to the LR management component where
LR creation takes place. Figure 4.2 shows the steps involved in object creation.

in: implementation handle, init data, object handle
out: reference to LR

1. Pass implementation handle to implementation repository.
Implementation repository returns class loader. Class
loader is used to load code and create LRManager class
object.

2. Create LRManager object.
2.a Invoke create() on LRManage class object to create

LRManager object.
2.b Register LRManager object in LNS.

3. Initialize LRManager object.
3.a Invoke configurable.configure(init data) on LRManager

object.
3.b For each subobject implementation handle specified in init

data:
3.b.i Get class object from LNS or implementation repository.
3.b.ii Create the subobject by invoking create() on the class

object.
3.b.iii Register the subobject in LNS.
3.b.iv Invoke configurable.configure(subobject init data) for

the subobject.
3.c Point LRManager’s control interfaces to the control subobject.

4. Configure LR.
4.a Invoke distributed.createDistrObject() or

distributed.bindDistrObject().
4.b Invoke distributed.setObjectHandle(object handle).
4.c Invoke distributed.distributeObject().

5. Register LR (as a reference to the LRManager object) in LR
table.

Figure 4.2: Steps involved in creating an LR.

4.1. OBJECT SERVER 83

In the first step the implementation handle is passed to the implementation repository.
The implementation repository uses information in the implementation handle to find a
suitable implementation. The implementation is returned together with a class loader,
which the object server uses to load the implementation into its address space. The object
server has two possibilities for loading the code. It can immediately load the code or load
it only when it is actually needed. When immediately loading the code, the object server
loads all the code required by the LR, including the code for all of the LR’s subobjects.
When loading it later (called lazy loading) the object server only loads the code for the
LR’s main subobject (called the LRManager subobject). The code for other subobjects
is loaded only when those subobjects are actually needed. Details of how the class loader
works and how code is found and loaded are provided in Section 4.2.

The LRManager is a subobject that is responsible for building and initializing the rest
of the LR.1 Figure 4.3 shows the position of the LRManager subobject in relation to an
LR’s other subobjects. Because of its administrative role, all interaction with the LR oc-
curs through this subobject. As such, an LR reference is implemented as a reference to
the LRManager. This means that any method invocation on the LR is first handled by the
LRManager and then passed on to appropriate subobjects. The LRManager, therefore,
exports the control subobject interfaces (which are derived from the semantics subob-
ject interfaces). In GlobeDoc this includes at least the document, content, property, and
lock interfaces. Besides the semantics subobject interfaces the LRManager also exports
the distributed interface (see Table 4.2) which is used for initializing the whole LR. This
interface will be described in more detail later.

interface distributed

method createDistrObject Start of call sequence to create the first LR
of a new DSO

method getContactAddresses Retrieves the contact addresses of the master
replica

returns The contact addresses
method bindDistrObject Start of call sequence to bind a local repre-

sentative to an existing DSO
method setObjectHandle Informs an LR of its object handle
in ohandle The object handle
method distributeObject Final call after all data has been set
method prepareImmediateDestruction Informs this object that it will be destroyed

soon, and that destruction should occur
quickly

Table 4.2: The distributed interface.

1The LRManager subobject was not introduced in Chapter 3 because it serves an administrative role and
does not affect the logical model of a Globe LR.

84 CHAPTER 4. GLOBEDOC ARCHITECTURE DETAILS

Control Subobject

Semantics
SubobjectSubobject

Replication

Subobject
Communication

LRManager
Subobject

Figure 4.3: Position of the LRManager subobject in relation to an LR’s other subobjects.

4.1. OBJECT SERVER 85

The second step in creating an LR involves creation of the LRManager subobject and
makes use of a Globe class object created in the previous step. Every Globe class object
implements a create method that is used to create an object instance of that class. A call
to a class object’s create method causes a Globe local object to be created and a reference
to that object’s standard object interface to be returned. The LRManager’s class object
is used to create an instance of the LRManager. After the LRManager object has been
created it is registered with the Local Name Space (LNS - see Section 4.1.3).

After creating and registering an LRManager object, the next step involves initializing
this object. Besides the standard object interface, all Globe LR subobjects also export
and implement the configurable interface. This interface provides methods that allow a
subobject to be configured with subobject-specific initialization data. After being created
and registered with the LNS, the LRManager object is configured using this configurable

interface. The initialization data passed to the LRManager consists of a list of imple-
mentation handles for the rest of the LR’s subobjects (semantics, control, replication and
communication) and corresponding initialization data for each of the subobjects. The im-
plementation handle and initialization data for the communication subobject are optional.
If they are not present then an appropriate system-specific communication subobject, as
provided by the Globe runtime system, is used (see Section 4.1.3).2

Figure 4.4 shows an example of a GlobeDoc LRManager’s initialization data. The data
consists of entries in the form of attribute-value pairs. There are two entries for each of
an LR’s subobjects. The first entry (e.g., sem-imp) specifies the Java class (or classes) that
implements the subobject, while the second (e.g., sem-init) specifies initialization data for
that subobject. Like the LRManager’s initialization data, the initialization data for each
of the subobjects also consists of a collection of attribute-value pairs. In this example,
the data includes four implementation handles, which specify the Java classes that imple-
ment each subobject, as well as initialization information for each of these subobjects.
The semantics subobject does not require any initialization data. The communication
subobject receives many initialization parameters that deal with setting up and contacting
multiplexed contact points. The initialization data for the replication subobject includes
the address of an LR peer to contact. Finally, the control subobject, like the semantics
subobject, receives no initialization data.

For every subobject specified in the initialization data, the LRManager takes one of
two actions depending on whether the implementation repository loaded the LR code
lazily or not. In the case of lazy loading the LRManager contacts the implementation
repository and asks it to load the given implementation handle and return the associated
class object. In the case of nonlazy loading the LRManager retrieves a reference to the
appropriate class object from the LNS. Given the class object the LRManager then cre-
ates a subobject instance, registers it with the LNS (in a name-space context relative to

2Communication subobjects need to access system-specific network resources, which, in many cases, re-
quires system specific knowledge (e.g., which network protocols are supported, how to access the network
resources, etc.). Because of this it is usually better for the runtime system to provide the communication subob-
jects, rather than have the LR provide its own communication subobject. As such, an LR really only needs to
specify its own communication object in exceptional cases (e.g., for debugging purposes or when making use of
nonstandard network protocols).

86 CHAPTER 4. GLOBEDOC ARCHITECTURE DETAILS

<sem-impl> =
<JAVA;vu.globe.globeDoc.globeDocumentImp.globeDocumentImpClassObject>,

<comm-impl> = <JAVA;vu.globe.comm.lwconn.LightConnectorCO>,
<repl-impl> = <JAVA;vu.globe.lr.replication.MasterSlave.msClientCO>,
<ctrl-impl> =
<JAVA;vu.globe.globeDoc.globeDocumentImp.gdControlClassObject>,

<sem-init> = <>,
<comm-init> =
< <mux-implementation> = <JAVA;vu.globe.comm.muxconn.MuxConnectorCO>,

<protocol-stack> = <[ip,tcp,ConnMux0]>,
<mux-initialisation> =

< <p2p-initialisation> = <>,
<p2p-implementation> =
<JAVA;vu.globe.comm.tcp.TcpConnectorCO> > >,

<repl-init> =
< <server-address> = <[ip:130.37.192.25,tcp:22999,ConnMux0:-9]>,

<sec-ownershipcheck> = false>,
<ctrl-init> = <>

Figure 4.4: Example initialization data for a GlobeDoc LRManager.

the LRManager’s own registration - see Section 4.1.3 for more details about the LNS
and name-space contexts), and initializes it with the appropriate initialization data. If no
communication object was specified in the LRManager’s initialization data, then the LR-
Manager finds a reference to a default communication class object in the LNS and uses
this to create a communication subobject. Once all the subobjects have been created the
LRManager configures the methods in its own (exported) control interface to call equiva-
lent methods on the control subobject.

In the fourth step, after the LRManager and all its subobjects have been created and
initialized, the methods of the LRManager’s distributed interface are invoked. These meth-
ods complete the initialization of the LR and involve linking all subobjects together, con-
tacting the rest of the DSO, etc. If the LR is being created as a result of calling createLR

then the first method called is createDistrObject, which informs the LR that it is being cre-
ated as a Globe object’s primary LR. Otherwise bindDistrObj is called to inform the LR that
it will become part of an already existing Globe object. Both methods allow preparatory
actions to be taken.

The second method to be called is the setObjectHandle method which tells the LR which
Globe object it will be part of. If the LR is being created with createLR then a new object
handle for the Globe object is generated by the location service, otherwise the object
handle discovered during the binding process is used.

Finally the distributeObject method is invoked. This method causes the LR to make itself
available to other LRs and to contact its LR peers. Making itself available to other LRs
requires the creation of contact points and the registration of the corresponding contact ad-
dresses with the location service. Contact point creation is coordinated by the replication
object. As part of the contact point creation process the replication object also determines
the communication and replication subobjects required to access them.

4.1. OBJECT SERVER 87

After the contact points have been created, the LRManager creates contact addresses
for them. As mentioned previously, a contact address contains an implementation handle
for an LR and appropriate initialization data. The LRManager includes its own implemen-
tation handle as the implementation handle part of the contact address. The initialization
data consists of the implementation handles and initialization data for the subobjects.
The LRManager determines the implementation handles and initialization data for the se-
mantics and control subobjects, while the replication subobject supplies the information
required for the replication and communication subobject parts. Note that the contact
point address is included in the replication subobject’s initialization data. When a contact
address has been created for each of the LR’s contact points then these addresses are reg-
istered with the location service. Figure 4.5 shows an example contact address. Besides
the implementation handle and initialization data, the contact address also contains some
location service specific data such as an address identifier (addr id) and a property mask
(props).3

domain:13,
addr_id:5b69703a3133302e33372e3139322e31362c7463703a32323939392c436f6

e6e4d7578303a2d315d0300000000000000,
address:

impl-handle=<JAVA;vu.globe.globeDoc.globeDocumentImp.gdLRImpClassObject>
init=
<sem-impl> =
<JAVA;vu.globe.globeDoc.globeDocumentImp.globeDocumentImpClassObject>,
<comm-impl> = <JAVA;vu.globe.comm.lwconn.LightConnectorCO>,
<repl-impl> = <JAVA;vu.globe.lr.replication.MasterSlave.msSlaveCO>,
<ctrl-impl> =

<JAVA;vu.globe.globeDoc.globeDocumentImp.gdControlClassObject>,
<sem-init> = <>,
<comm-init> =

< <mux-implementation> =
<JAVA;vu.globe.comm.muxconn.MuxConnectorCO>,

<protocol-stack> = <[ip,tcp,ConnMux0]>,
<mux-initialisation> =
< <p2p-initialisation> = <>,

<p2p-implementation> =
<JAVA;vu.globe.comm.tcp.TcpConnectorCO> > >,

<repl-init> =
< <server-address> = <[ip:130.37.192.16,tcp:22999,ConnMux0:-1]>,

<sec-ownershipcheck> = false>,
<ctrl-init> = <>,

props:{0, 1}

Figure 4.5: Example contact address.

The final step of the LR creation process involves storing a reference to the LRMan-
ager in the object server’s LR table. This is a table that keeps track of an object server’s
hosted LRs and their properties. The LR table will be described later.

3The details of the location service specific data contained in the contact address is beyond the scope of this
dissertation. More details about the location service and its implementation can be found in [12].

88 CHAPTER 4. GLOBEDOC ARCHITECTURE DETAILS

LR Destruction

As with LR creation there are also multiple ways to destroy an LR. An LR can be
destroyed as a result of calling the object server management interface’s removeLR or
unbindDSO methods. An LR can also be destroyed as a result of the object server shut-
ting down.

Calling the removeLR method results in the destruction of a single, specific, LR. The
unbindDSO method, on the other hand, results in the destruction of all LRs hosted by the
object server that are part of a given Globe object. This method retrieves a list of LRs
belonging to the given Globe object and destroys them one by one (by invoking removeLR

on each LR individually). During an object server shutdown, the garbage collection pro-
cess causes all hosted LRs to be released. Note that releasing an LR is not equivalent to
permanently destroying it. When released, persistent LRs are given a chance to save their
state before the LR is destroyed. For transient LRs release is equivalent to destruction.

Figure 4.6 shows the steps involved in the destruction (or release) process for a tran-
sient LR. The differences for a persistent LR will be described later on in this Section.

in: LR identifier

1. Get reference to LR given LR identifier.

2. Remove reference from table, also remove all other references
to LR (including from LNS).

3. LR is garbage collected.
3.a If this is not an object server shutdown
3.a.i All registered contact addresses are unregistered.
3.b Replication subobject is told to clean up.
3.b.i Possibly update remote states (if not object server

shutdown).
3.b.ii Break connections to all LR peers.
3.b.iii Unregister contact points
3.c Semantics subobject is told to clean up.

4. LR object instance is destroyed.

Figure 4.6: Steps involved in the LR destruction process.

The process starts by mapping an LR identifier, which is an index into the LR table,
to an LR reference (a reference to the LR’s LRManager subobject). Next, the LR’s LR
table entry and all other references to the LR are removed. Once all references to the LR
are removed it becomes unreferenced and the LR is garbage collected, initiating the LR
cleanup process.

The first step in this process is that all of the LR’s registered contact addresses are
unregistered from the location service preventing any processes from connecting to or
contacting the LR. Note that this is done only in the case of a regular LR removal. In the
case of an object-server shutdown the server cannot rely on network communication and
therefore cannot reliably contact the location service.

4.1. OBJECT SERVER 89

After unregistering the contact addresses, the replication and semantics subobjects
are told to clean up their state. The replication subobject starts first. Depending on its
implementation and whether this is a server shutdown or not, the replication subobject
may attempt to communicate with its LR peers to update the Globe object’s state. After
completing any communication with other LRs the replication subobject breaks all net-
work connections it has with its LR peers. Once all connections have been broken the
communication subobject is told to deallocate all contact points.

After the replication subobject has performed its cleanup the semantics object is al-
lowed to clean up its state. The actions taken by a semantics subobject during cleanup are
implementation dependent. The GlobeDoc semantics subobject, for example, removes all
state that it has stored on secondary storage before deallocating all memory it has used for
storing its state.

After all the subobjects have cleaned up their state, the LRManager along with all the
other subobject instances are destroyed and removed from memory.

Note that the above describes the situation where an LR may be destroyed. Depending
on a GlobeDoc object’s distribution strategy an object may not allow certain LRs to be
destroyed, or may require authentication before an LR is destroyed. For example, if a
GlobeDoc object’s state is partitioned (and not replicated) over its LRs, then destroying
an LR would result in the destruction of (part of) the GlobeDoc object’s state. Before
allowing destruction of such an LR, a copy of that LR would have to be created elsewhere
or the state contained in that LR would have to be copied to its LR peers.

LR Administration

The object server keeps track of hosted LRs in an LR table, a table that keeps track of
LRs and their properties and maps internal LR identifiers to LR references. The LR
table is generally used to get status information about a particular LR, get a list of all
installed LRs, distinguish between persistent and transient LRs and map between internal
LR identifiers and object handles or names.

The table contains an entry for each LR hosted by the object server. An LR entry
contains an LR identifier, the object handle and name of the DSO that the LR is part of,
how the LR was created (i.e., created directly or through binding), a flag telling whether
or not the LR is persistent, the time at which the LR was created, a time stamp specifying
when the LR’s state was last modified, and a list of all the contact addresses exported
by the LR (this may include contact addresses that are not registered with the location
service). An entry for a persistent LR contains the above, as well as a field containing the
LR’s persistence identifier and a reference to an associated persistence manager.

The LR table is a persistent data structure. This means that it is saved to secondary
storage when the object server shuts down.

Persistence Management

Persistent and transient LRs were introduced in Chapter 3. Recall that a transient LR is
one whose state is lost when the process hosting it ceases to exist (e.g., the object server is

90 CHAPTER 4. GLOBEDOC ARCHITECTURE DETAILS

shut down). A persistent LR’s state, on the other hand, persists across subsequent restarts
of the hosting process.

When shutting down, the object server must make sure that the state of all persistent
LRs is safely stored on some sort of persistent storage (e.g., a local disk). The object
server must also store a record of all persistent LRs on that same persistent storage. When
starting up again, an object server must be able to recreate and reload the state of all
persistent LRs that it hosted before shutting down.

A persistent LR can be active or passive. An active persistent LR (or simply active
LR) has both an active and a passive component. The active component is an instance of
the LR loaded into the object server’s address space. An active component contains the
LR’s state. Methods invoked on the LR modify that state. The passive component, on the
other hand, consists of the LR’s state as stored on persistent storage. This passive state is
usually not directly modified as a result of method invocations on the active component.
A passive persistent LR (or simply passive LR) has only a passive component. A passive
LR can be activated to become an active LR, likewise, an active LR can be passivated
to become a passive LR. A transient LR only ever has an active component, it cannot be
passivated. Figure 4.7 shows an example of a transient LR, an active LR and a passive
LR. The transient LR only has an active component, the active LR has both an active and
a persistent component and the passive LR has only a passive component.

Persistent LRs, their resources, and the process of passivation and activation are man-
aged by the persistence manager. The persistence manager has two main responsibilities.
The first is the management of persistent LRs, which includes passivating and activating
LRs, keeping track of persistent LRs, and cleaning up unused persistent LRs. The second
responsibility is the management of persistent resources. The persistence manager makes
persistent resources available to persistent LRs and manages the allocation and clean up
of persistent resources. Persistent resources, like persistent LRs, are resources that re-
main allocated and available across restarts of the allocating process. Persistent resources
offered by the object server include persistent storage and contact points. Because the ad-
ministrative information about persistent LRs and resources must survive process restarts,
the persistence manager must itself be a persistent object. A third responsibility of the
persistence manager is, therefore, the management of its own persistent state.

The persistence manager keeps track of persistent LRs by assigning each one a per-
sistence identifier (PID). The PID is used as a reference to a persistent LR. A PID can,
however, also be used to refer to a persistent resource. A PID remains valid across process
restarts. The persistence manager is responsible for mapping PIDs to their related LRs or
resources.

Information about active LRs is stored by the persistence manager in a table of ac-
tivation records. An activation record stores information about a single active LR. It
includes: a PID, a reference to the LR’s active component, a reference to the LRs passive
component (in the form of the PID of its persistent storage resource), and an implementa-
tion handle and corresponding initialization data, which can be used to recreate the active
component.

When the persistence manager is passivated it stores all the activation records on per-
sistent storage. All the activation record fields, except for the reference to the LR’s active

4.1. OBJECT SERVER 91

on disk
persistent storage

on disk
persistent storage

LR instance

LR instance

transient LR

active LR

passive LR

Figure 4.7: A transient LR, an active persistent LR, and a passive persistent LR.

92 CHAPTER 4. GLOBEDOC ARCHITECTURE DETAILS

component, are stored. Because an active component is not persistent, the reference to the
LR’s active component is not persistent and does not need to be stored.

Passivation and object server shutdown. When an object server shuts down, all per-
sistent LRs must be passivated. As mentioned above, this occurs during regular object
server shutdown when all installed LRs are released. Whereas releasing a transient LR
is equivalent to destroying it, for a persistent LR this results in passivation. Passivation
is coordinated by the persistence manager and results in the updating and saving of the
passive component to persistent storage and the destruction of the active component.

The steps involved in the passivation process are outlined in Figure 4.8.

in: LR reference, LR activation record

1. Store implementation handle and init data in activation record.

2. Save LR state to persistent storage.
2.a Tell replication subobject to save state.
2.b Replication subobject gets state from semantics subobject.
2.c Replication subobject writes state to persistent storage.

3. Remove active component reference from activation record.

Figure 4.8: Steps involved in the passivation of an active LR.

In the first step the persistence manager acquires the LR’s implementation handle and
initialization data from the LR and stores these in the appropriate fields of the LR’s activa-
tion record. Next, the LR is given the opportunity to save its state to persistent storage. In
a GlobeDoc LR the only subobjects that need to save state are the replication and seman-
tics subobjects. The semantics subobject does not have direct access to persistent storage
(it does, however, have access to secondary storage through a local storage object as de-
scribed in Section 4.1.4). As such, its passivation is regulated by the replication object.
The replication subobject is told to passivate its state. As part of its passivation process
the replication subobject requests a copy of the semantics subobject’s state and saves it to
persistent storage. The replication subobject then saves its own state (if any) to the same
persistent storage and returns control to the LRManager.

After the LR saves all its state to persistent storage, the persistence manager removes
the reference to the active component from the LR’s activation record. If no other refer-
ences to that active component exist, then the garbage collector will cause it to be cleaned
up and be destroyed. If, however, other references to the active component exist, it might
take a while before that component is actually cleaned up and destroyed. Because the LR
has already been passivated, the active component’s state is no longer valid, and may no
longer be accessed. This means that after passivation, an LR may not allow invocations
of any methods that access its state.

4.1. OBJECT SERVER 93

Activation and object server startup. When the object server is started, one of the
first things it does is start up the persistence manager. As part of its startup process,
the persistence manager reads in its own passive state and rebuilds its table of activation
records. When the table has been rebuilt the persistence manager iterates through all the
activation records and activates each of the associated LRs.

Activating an LR involves recreating the active component using the stored imple-
mentation handle and initialization data as described earlier. In the last steps, however,
instead of initializing the object using the distributed interface the LR is told to restore its
state from the given persistent storage. Once the LR has been activated, the persistence
manager stores a reference to it in the appropriate activation record.

Persistent storage. Persistent state is stored on persistent storage. Persistent storage
can be a local file system, a remote file system, flash ROM, anything that can reasonably
be expected to provide the same contents the next time the object server is restarted. Per-
sistent storage is accessed through storage objects which are Globe system objects that
allow access to storage through methods defined in the storage and persistentObject inter-
faces. The storage interface defines a file-like interface that allows data to be written to and
read from storage. This interface is described later in Section 4.1.4. The getPersistenceID

method in the persistentObject interface (shown in Table 4.3) returns the PID associated
with a given persistent storage object. Every persistent storage object is associated with
one PID.

interface persistentObject

method getPersistenceID Returns the PID associated with the persistent object
that implements this interface

returns The PID

Table 4.3: The persistentObject interface.

The persistence manager is responsible for creating and managing persistent
storage objects. The persistence manager implements the storageManager and
perstResourceManager interfaces. The storageManager interface allows storage objects to be
allocated and deallocated (the interface is presented in more detail in Section 4.1.4). Re-
sources allocated through this interface must explicitly be flagged as persistent by invok-
ing the makePersistent method in the perstResourceManager interfaces shown in Table 4.4.
This method causes a PID to be assigned to an existing storage object.

The persistence manager stores a mapping of storage object PIDs to actual storage
resources (such as files) in an internal table. This table is part of the persistence man-
ager’s persistent state and is stored on persistent storage when the persistence manager is
passivated. When the persistence manager is activated it rebuilds the table and recreates
storage objects for the data stored on persistent storage.

94 CHAPTER 4. GLOBEDOC ARCHITECTURE DETAILS

interface perstResourceManager

method makePersistent Assigns a PID to an existing storage object
in allocator The PID of the allocating persistent object
in res The storage object to flag as persistent

Table 4.4: The perstResourceManager interface.

Persistent Contact Points. Besides persistent storage, persistent LRs also require per-
sistent contact points. Like persistent storage, a persistent contact point remains avail-
able across restarts of the object server. Besides simply remaining available, a persis-
tent contact point also remains allocated to the same persistent LR across object server
restarts. Like regular (transient) contact points persistent contact points are also repre-
sented by contact addresses. A persistent contact point’s contact address must remain
valid (i.e., it must refer to the same contact point) throughout that contact point’s lifetime.
This means that once such a contact address has been registered with the location service,
that registration does not have to be modified until the persistent contact point is explicitly
destroyed. Because of this, passivated LRs do not have to unregister their contact address
registrations. Those registrations will still be valid when the LR is activated again. Note,
however, that the location service does not know whether a contact address refers to a
passivated LR or not. It is up to a binding client to determine whether a given contact
address is usable or not.

Persistent contact points are implemented using regular transient contact points. When
a persistent contact point is created it is assigned a transient contact point (e.g., a TCP
socket). The persistent contact point is guaranteed to always have the same transient con-
tact point assigned to it. For example, if a persistent contact point is assigned a transient
contact point with TCP/IP address 130.37.16.40:25005 then every time that its hosting
process is restarted it is guaranteed to be assigned a transient contact point with the same
address. This address will be contained in the persistent contact point’s contact address.

If every persistent contact point were assigned a separate transient contact point, then
acquiring each of these transient contact points every time the object server started up
would be a daunting task. Due to the way that most operating systems assign and allo-
cate network addresses (especially port numbers) this would be next to impossible if other
networked processes were started in between successive runs of the object server. The so-
lution to this problem lies in assigning a single multiplexed contact point for all persistent
contact points. Multiplexed contact points are explained in Section 4.1.5.

Note that persistent LRs do not have persistent connections to other LRs or clients.
When a persistent LR is passivated it breaks all its network connections. Depending on its
replication policy, when a persistent LR is activated again it might attempt to reestablish
some or all of those connections.

4.1. OBJECT SERVER 95

4.1.3 Globe Runtime Services Component

The Globe runtime services component implements the Globe runtime system which pro-
vides services needed by any Globe-enabled processes (i.e., any process that can bind to
and invoke methods on Globe objects). The Globe runtime system provides the following
components.

• The binder object, which allows processes to bind to DSOs and implements the
binding process as described in Chapter 3.

• The implementation repository, which provides access to LR implementations.
The implementation repository is responsible for loading implementations into a
process’s address space. It is a service that can be implemented locally, as a re-
mote service, or some combination of both. The implementation repository will be
described in detail in Section 4.2.

• The local name space (LNS), which provides a Globe-enabled process with a di-
rectory of local objects, services and resources. The LNS is also used by LRs to
keep track of and allow communication between their subobjects.

• Remote service resolvers, which provide local access to remote services such as
the naming and location services.

Binder Object

The binder object is a local object, provided by the Globe runtime system, that coordi-
nates the process of binding to Globe DSOs. The binding procedure, as described earlier,
consists of five stages. In the first stage, name resolution, an object name is resolved to an
object handle. In the next stage, location lookup (also known as object handle resolution),
the object handle is resolved to a set of contact addresses. After this comes the address
selection stage, which involves selecting one contact address from the set acquired in the
previous step. The fourth stage is instance creation where, given the contact address se-
lected in the previous stage, a local representative of the DSO is created and initialized.
Finally, in the last stage, instance initialization, the initialization of the LR created in the
previous stage is completed using data, acquired in the previous stages, such as the name
and object handle of the Globe object being bound to.

Generally the binding procedure starts with the name resolution stage and proceeds
until the instance initialization stage. In some cases, however, it may be possible to start
the procedure in a later stage, such as when the requesting process already has an object
handle, or has a specific contact address that it must bind to. In these cases the binding
procedure would be started from the second and third stages respectively. Likewise, it
might be necessary for the binding procedure to stop before reaching the final stage. For
example, given an object name a process might require an associated contact address, but
not want to actually bind to the associated DSO. In this case binding would start at the
first stage and stop after completing the third stage.

96 CHAPTER 4. GLOBEDOC ARCHITECTURE DETAILS

interface binder
Methods to get intermediate results.

method getObjectName Retrieves the DSO name
returns The DSO name
method getObjectHandle Retrieves the object handle
returns The object handle
method getContactAddressSet Retrieves the current (nonempty) set of contact ad-

dresses
returns The contact addresses
method getContactAddress Retrieves the currently selected contact address
returns The contact address
method getInstance Retrieves the current LR
returns The LR

Methods to set and get binding parameters.
method setNumOHandleResolutions Sets the number of object handle resolution retires
in nres The number of retries
method getNumOHandleResolutions Retrieves the number of object handle resolution re-

tires
returns The number of retries
method setNumSelections Sets number of contact addresses that may be tried

by repeated contact address selections
in nsels The number of contact addresses tried
method getNumSelections Retrieves the number of contact addresses to try
returns The number of contact addresses to try
method setLookupProperties Sets criteria used to look up contact addresses
in sel The lookup criteria
method getLookupProperties Retrieves contact address lookup criteria
returns The lookup criteria
method setPersistence Sets whether LR should be persistent or not
in allocator PID of the allocating persistent object
method getPersistence Retrieves the value set by setPersistence
returns The value set by setPersistence

Methods to initiate the binding process
method bind Starts binding from the name resolution stage
in oname The name of the DSO to bind to
method bindOHandle Starts binding from the object handle resolution

stage
in ohandle The object handle of the DSO to bind to
method bindCAddr Starts binding from the contact address resolution

stage
in ohandle The object handle of the DSO to bind to
in caddr The contact address to bind to

Table 4.5: The binder interface.

4.1. OBJECT SERVER 97

The binder object implements the binder interface as shown in Table 4.5. This interface
provides methods that allow binding to be started and stopped at any stage.

The first set of methods (getObjectName, getObjectHandle, getContactAddressSet,
getContactAddress, and getInstance) return the intermediate results from the various binding
stages.

The second set of methods sets parameters for the various binding stages. The
setNumOHandleResolutions method sets the number of times that the object handle resolu-
tion stage may be repeated before failing (which is explained below). The setNumSelections

methods sets the number of times that the address selection stage may be repeated before
failing. Criteria used by the location service to look up contact addresses is set by the
setLookupProperties method. The setPersistence method sets a parameter which determines
whether the resulting LR should be created as a persistent or transient object. The corre-
sponding get methods return the value of their respective parameters.

Finally the bind methods initiate the actual binding procedure. The bind method starts
the procedure from stage one and is given the name of the Globe object to bind to. Invok-
ing bindOHandle starts binding from the second stage. The method takes the object handle
of the Globe object to bind to as a parameter. Invoking bindCAddr starts the procedure from
stage three and is given a contact address to bind to. It is also given an object handle to
assign to the LR once it has been created and initialized.

Generally the stages are processed in the order given above. Sometimes, however,
errors or failures may cause some stages to be retried. The address selection stage is
retried after an error in the instance creation or initialization stages. Retrying address
selection involves choosing a different contact address and continuing the process using
that address. The object handle resolution stage is retried if the address resolution stage
runs out of contact addresses to consider without successfully having bound to the Globe
object. Retrying this stage involves broadening the scope of the location service lookup
to retrieve more contact addresses.

Note that while the binder coordinates the binding process it does not perform all
the steps of the process itself. Name resolution, for example, is performed by the name
service resolver and object handle resolution is performed by the location service resolver.
LR creation is performed by a number of components as described previously.

Local Name Space

The local name space (LNS) [47][106] provides a Globe-enabled process with a direc-
tory of local objects (including LRs and their subobjects), services, and resources. It is
implemented as a tree of contexts where a context represents a local object in the LNS.
A context is associated with exactly one local object. A context can have one or more
subcontexts, in which case it is called the parent of those subcontexts.

A context names its subcontexts by defining a mapping of labels to its subcontexts. A
label is simply a string that names a context. A context can be referred to using a path
name, which is a concatenation of multiple labels separated by slashes (“/”) and represents
the path to that context relative to some starting context. A path name may contain special
labels such as “.”, “..” and “:” which refer to the current context, the parent context, and

98 CHAPTER 4. GLOBEDOC ARCHITECTURE DETAILS

the root context, respectively. A path name, such as :a/b/c, which starts at the root context
is called an absolute path name. Other path names, such as b/c, are called relative path
names.

Besides referring to a local object, an LNS context can also be empty, a symbolic link,
or a delegation. An empty context is one that does not refer to any local object. Generally
empty contexts are used for internal nodes in the name space tree. A symbolic link in the
LNS is similar to a symbolic link in Unix, it is a context that refers to another context by
name. A symbolic link consists of a source context and a target name. The source context
is the symbolic link context’s name while the target name is a path name that refers to the
target context.

A delegation is a context under which an external name space has been placed. An
external name space may, for example, be another LNS name space but may also be the
name space of a local or remote file system. A delegation is similar to a mount point in
Unix file systems. A delegation context implements a delegation interface which provides
access to the external name space. The delegation context is responsible for resolving
path names that fall within its name space.

A path name can be resolved to acquire a reference to the context that it refers to.
Resolution of path names is similar to the resolution of file system path names in, for
example, Unix. It involves repeatedly resolving each of a path name’s components until
the path name’s final component has been resolved. A single path name component is re-
solved by consulting the label mappings of the current context until a table corresponding
to the given path name component is found. Resolving a path name component results in
a reference to the corresponding context. Resolution of absolute path names always starts
at the root context. Resolution of relative path names always starts at some context that
is considered to be the current context. In every step of path name resolution the current
context is set to the most recently resolved context.

As an example of path name resolution, given the name space shown in Figure 4.9,
resolution of the path name :a/b/c would start by consulting the root context’s mapping
and looking for the label “a.” Then, given the context for “a,” resolution continues by
consulting this new context to find a mapping for the label “b.” Finally, given the context
for “b,” its mappings are consulted to find label “c.” The resulting context is the final
context and represents the context referred to by the path name :a/b/c.

The Globe runtime system implements the LNS as a name server object. The LNS
name server object implements the name server interface, which provides methods that
allow the creation of contexts, symbolic links, and delegations. It also allows objects to
be inserted into the name space at given contexts and allows pathnames to be resolved.
Finally, it allows objects to be unregistered and contexts to be removed.

Access to Remote Services

In order to find and bind to objects Globe relies on two important external services, the
naming and location services. Access to these services is provided through the runtime
system’s remote service resolvers. The resolvers are local objects that act as stubs to the

4.1. OBJECT SERVER 99

f a r

b d

c objects

contexts

mappings

s

: (root)

Figure 4.9: Example LNS name space.

remote services, that is, they export and implement interfaces that mirror the functionality
of the services they serve.

Another important remote service is the Globe Infrastructure Directory Service
(GIDS). GIDS is a service that keeps track of all infrastructure elements (e.g., object
servers, GlobeDoc gateways, etc.) for a Globe environment. Like the name and location
services GIDS is also accessed through a local resolver object. GIDS and its resolver
object are discussed in detail in Chapter 5.

Generally, the Globe runtime system will make a single instance of each resolver
available and these will be shared by all entities using them. The resolver objects are made
available under well-known names (i.e., they are given previously determined names) in
the LNS so that they can be easily found. There are two reasons for providing single
instances of resolvers and requiring them to be shared. First, the resolvers contain state
that must be shared by all entities using the same runtime system. The location service
resolver, for example, provides its clients with identifiers that refer to location service
registrations. These identifiers are indexes into a table kept by the resolver that keeps track
of all registrations made by it. Because the identifiers can be shared between different
local objects it is important that such an ID always refers to the right registration. If
different local objects used different location service resolvers, this would not necessarily
be the case. The second reason is that using the resolvers requires communication with
external services. Creating and initializing a resolver is thus an expensive process. It is
more efficient for both the client and the runtime system to create the resolver once and
share the resulting object.

100 CHAPTER 4. GLOBEDOC ARCHITECTURE DETAILS

4.1.4 Local Storage Management Component

The local storage management component provides access to the locally accessible sec-
ondary storage of the machine that the object server runs on. Access to local storage is
required by persistent LRs in order to be able to store their state. Access to local storage
may also be required by LRs that directly store some or all of their state on secondary stor-
age. Generally, the semantics subobjects are the ones that directly store state on secondary
storage. GlobeDoc is an example of a Globe object whose LRs store their state on local
storage. As mentioned previously, because a GlobeDoc object may contain many (possi-
bly large) elements, and because an object server may host many such GlobeDoc objects,
it quickly becomes infeasible for a GlobeDoc object to store all of its state in main mem-
ory. In order to prevent GlobeDoc objects from using up all of an object server’s memory
resources, the GlobeDoc semantics subobject stores elements on local storage.

An LR can access secondary storage through a local storage object, which is a local
object that provides platform-independent access to local storage resources. The storage
object is used like a file and provides a file-like interface (see Table 4.6). Note that the
storage interface is also implemented by persistent storage objects. The main difference
between transient and persistent storage objects is that persistent storage objects also im-
plement the persistentObject interface. Another difference is, of course, that persistent stor-
age objects guarantee that the data they write to storage will be available across restarts
of the object server. Data written through regular storage objects is not guaranteed to be
available across object server restarts (because, for example, it might have been cached
and not flushed out to disk).

Storage objects are allocated using a resource manager object that implements the
storageManager interface (see Table 4.7).

Before writing to local storage, storage space must first be allocated by invoking the
resource manager’s allocateStorage method. This results in storage space being reserved
and a resource identifier (RID) being allocated for the given space. Before using the
allocated space it is necessary to acquire a storage object that can be used to write to the
allocated storage space. This is done by invoking the openStorage method. Finally, when
the storage space is no longer needed, it can be freed by calling deallocateStorage.

Note that, when storage is allocated for use by persistent LRs, the resource manager
must be informed that the storage is persistent. This can be done only if the resource man-
ager also implements the perstResourceManager interface. The result is that the resource
manager remembers that that storage is persistent and that it cannot be removed when the
object server shuts down. Generally the persistent storage is stored in a different part of
the underlying file system than the regular storage (e.g., files containing persistent storage
are stored in a different directory than files containing transient object server data). In this
way the persistence manager can easily find all of the persistent storage when an object
server is restarted.

4.1. OBJECT SERVER 101

interface storage

method write Writes to the storage represented by this object
in packet The data to write
method read Reads from the storage represented by this object
in nbytes The number of bytes to read
returns The data read
method getCurrent Retrieves the current offset of this storage object
returns The current offset
method seek Sets the current offset of this storage object
in cur The new offset
method getLength Retrieves the size of the storage represented by this stor-

age object
returns The size of the storage
method setLength Sets the size of the storage represented by this storage

object
in len The size of the storage
method close Closes the storage object
method getResourceID Retrieves the resource ID of the storage resource repre-

sented by this object
returns The resource ID

Table 4.6: The storage interface.

interface storageManager

method allocateStorage Allocates storage
returns The resource ID of the allocated storage
method deallocateStorage Releases storage
in rid The resource ID of the storage to release
method openStorage Creates a storage object through which previously al-

located storage can be accessed
in rid The resource ID of the storage to access
returns A storage object through which the storage can be ac-

cessed

Table 4.7: The storageManager interface.

102 CHAPTER 4. GLOBEDOC ARCHITECTURE DETAILS

4.1.5 Network Management Component

The network management component provides LRs with access to the resources required
for communication. An LR accesses available network resources through the standardized
interfaces provided by its communication subobject. Because communication subobjects
rely on local network resources they are usually supplied by the Globe runtime system.
In rare cases, however, communication subobject implementations may be included with
an LR implementation. This is usually the case when a custom-made communication
subobject is required for debugging or measurement purposes, or when a custom commu-
nication protocol is used.

A communication subobject provides contact points and communication endpoints.
A contact point is a resource through which an LR can be contacted. It is always as-
sociated with a network address which is referred to as a contact point address.4 A
contact point is always associated with a native contact point. A native contact point is
a contact point defined by the underlying platform, for example, a TCP/IP listen socket
or a UDP/IP socket. The format of a contact point’s address is dependent on the protocol
of the associated native contact point. An example of a TCP/IP contact point address is
130.37.16.40:25005. A connection-oriented contact point receives connection requests
and creates a connection to the sender. The connection is then used as a communication
channel. Note that a connection-oriented contact point cannot be used for general commu-
nication. Unlike a connection-oriented contact point, however, a connectionless contact
point can be used for general communication.

A communication endpoint is a resource through which LRs can communicate with
each other. In order for two LRs to communicate, they must both have access to a commu-
nication endpoint. In connection-oriented communication a communication endpoint can
be used only if it is associated with an existing connection. In connectionless communica-
tion a communication endpoint is equivalent to a contact point and is not associated to any
sort of connection. Like a contact point, a communication endpoint is always associated
with a native communication endpoint. A native communication endpoint is a com-
munication endpoint that is defined by the underlying platform, for example, a TCP/IP
connection socket or a UDP/IP socket.

There are four types of communication subobjects:

• Connectionless point-to-point communication subobjects provide connectionless
communication between two parties.

• Connection-oriented point-to-point communication subobjects provide connection-
oriented communication between two parties.

• Connectionless group communication subobjects provide connectionless commu-
nication between multiple parties.

• Connection-oriented group communication subobjects provide connection-oriented
communication between multiple parties.

4Note, that a contact point address is not the same as a contact address.

4.1. OBJECT SERVER 103

Group communication has not been implemented yet and will not be described further.
Although it is referred to as a subobject the communication subobject is not a single

object but consists of a number of separate Globe local objects. These local objects com-
bine to provide the interfaces and functionality exported by the communication subobject.
Looked at this way, it may seem more appropriate to refer to the communication subob-
ject as a subsystem rather than a subobject. However, for consistency with the naming
of the other (semantics, control, and replication) subobjects we continue to use the term
communication subobject.

The local objects comprising the communication subobject are called communication
objects or communication components.5 The interfaces exported by a communication
subobject depend on the interfaces exported by its constituent communication objects.
At the very least, every communication object implements the standard communication
interface. This interface provides methods that return information about the particular
communication object, such as the protocol stack it implements, and a list of other com-
munication interfaces that it exports.

A connectionless point-to-point communication subobject consists of a connection-
less communication object. This is an object that is capable of sending and receiving
messages without having to establish a connection. It defines a contact point to which
messages can be sent by other connectionless communication objects. Besides the stan-
dard communication interface, this object also implements the contactExporter and msg

interfaces. The contactExporter interface is used to export the contact address of a contact
point implemented by the communication object. The msg interface is used to send and
receive messages from other connectionless communication objects.

A connection-oriented point-to-point communication subobject consists of connector
objects, listener objects and connection objects. A connector object is a communication
object capable of initiating connections to listener objects. Besides the standard com-
munication interface, the connector object also implements the connector interface. This
interface provides methods for sending connection requests to remote listener objects.
When a connection request is honored by a remote listener object, the connector object
returns a connection object corresponding to the newly created connection.

A listener object is a communication object capable of accepting and honoring con-
nection requests from remote connector objects. Besides the standard communication
interface, a listener object implements the listener and contactExporter interfaces. This
listener interface provides methods for accepting connection requests from remote con-
nector objects. When a connection request is accepted, the listener object returns a con-
nection object corresponding to the newly created connection. The listener represents a
connection-oriented contact point.

A connection object represents a communication endpoint. It is created by a listener
or connector and represents an accepted or initiated connection. Besides the standard
communication interface, it implements the connection and msg interfaces. The connection

interface provides methods that return information about the connection (e.g., the asso-

5Note that for the rest of this section communication subobject and communication object are not inter-
changeable terms.

104 CHAPTER 4. GLOBEDOC ARCHITECTURE DETAILS

ciated remote and local addresses). The connection interface can also be used to close a
connection.

In a simple implementation of a communication subobject each exported contact point
is implemented as a single native contact point. Similarly each communication endpoint
is implemented as a single native communication endpoint. More complex implementa-
tions may associate multiple contact points to a single native contact point, or multiplex
multiple communication endpoints over a single native communication endpoint.

Multiplexed Contact Points

Multiplexing of contact points involves implementing multiple contact points using a sin-
gle native contact point. There are two reasons for introducing multiplexed contact
points. First, it helps to reduce the number of native contact points that a process must
allocate. Second, it provides a base for the implementation of persistent contact points.
In the first case, the problem is that a process (such as an object server) is limited in the
number of native contact points that it can allocate. If such a process hosts many LRs
(each of which requires one or more contact points), it may run out of available native
contact points. This places a limit on the number of LRs that can be hosted at any one
time. By multiplexing contact points a process can reduce the number of native contact
points that it allocates and thus increase the number of LRs it can host. In the second case,
as described earlier, the object server process allocates one or more native contact points
and multiplexes persistent contact points on top of these. The object server is responsible
for reallocating these same native contact points whenever it is restarted. By reducing the
number of native contact points that must be reallocated, there is less chance that these
will be taken by another application.

Both connection-oriented and connectionless contact points can be multiplexed. Fig-
ure 4.10 shows the objects involved in multiplexing a connectionless contact point. Recall
that in connectionless communication, contact points are equivalent to communication
endpoints. At the very bottom of the figure is a native connectionless contact point, in this
case a UDP/IP socket. The address of this native contact point is its UDP/IP address, for
example: 130.37.16.40:25003. The native contact point is wrapped in a connectionless
communication object, which defines a single contact point.

The next object (from the bottom up) is a shared multiplexer object. The task of a
multiplexer object is to define logical contact points, which are mapped onto the single
contact point below it. Such a logical contact point is called a multiplex port. The address
of a multiplex port consists of a multiplex port number and the underlying contact point’s
address. Thus, for example, the address for multiplex port 9000 would be: 130.37.16.40:
25003:9000.

Above the multiplexer object are light-weight communication objects. These com-
munication objects present a regular connectionless communication object interface to
their users. Their task is to hide any multiplexing details from their users. Each light-
weight communication object defines a contact point that corresponds to a multiplex port.
The address of the light-weight contact point is the same as the address of the multiplex
port that it uses, e.g., 130.37.16.40:25003:9000.

4.1. OBJECT SERVER 105

Object

UDP/IP socket

Connectionless
Communication

Object

multiplex ports

Multiplexer

LR

Light-Weight
Comm Object

LR

Light-Weight
Comm Object

Figure 4.10: Objects involved in multiplexing a connectionless contact point.

106 CHAPTER 4. GLOBEDOC ARCHITECTURE DETAILS

Figure 4.11 shows an example of the transmission of a message using a UDP/IP mul-
tiplexer. In this example the sender wants to send a message to multiplex port 9000 at
address 130.37.16.40:25003. To do this, the sender first invokes the send method (pass-
ing the message and destination address) on its light-weight communication object. As
a result, the light-weight communication object invokes the multiplexer’s send method,
passing along the message, destination address, and its own multiplex port number (so the
receiver knows who sent the message). Next, the multiplexer creates a new message con-
taining the original message, the receiver’s multiplex port, and the senders multiplex port
and passes this on to the underlying communication object. This communication object
then passes the message on to the native contact point where it is sent as a UDP datagram
to the receiver. When the native contact point on the receiver end receives the message, it
passes it on to its associated communication object where the message is passed up to the
multiplexer. The multiplexer then extracts the receiver’s multiplex port from the message
and passes the rest of the message on to the light-weight communication object associ-
ated with that multiplex port. Finally, the light-weight communication object passes the
message on to its user.

Multiplexer
Object

LR

Light−Weight
Comm Object

LR

Light−Weight
Comm Object

Multiplexer
Object

UDP/IP socket

Connectionless
Communication

Object

send(:130.37.16.40:25003", 9000, 35, "message")

(address 130.37.16.100:7000)

Communication
Object

multiplex port 35

send(:130.37.16.40:25003", "35,9000,message")

ReceiverSender

UDP datagram sent over network

(address 130.37.16.40:25003)
UDP/IP socket

"35, 9000, message"
recieve() returns: 130.37.16.100:7000

Connectionless

multiplex port 9000

"message"
recieve() returns: 35, 130.37.16.100:7000

"message"
recieve() returns: 130.37.16.100:7000:35send(:130.37.16.40:25003:9000", "message")

Figure 4.11: Example of transmitting a message using a UDP/IP multiplexer.

Figure 4.12 shows the objects involved in multiplexing a connection-oriented contact
point. As in the connectionless case, at the bottom there is a native contact point, in this
case a TCP/IP listen socket. The address of this contact point is its TCP/IP address, for
example: 130.37.16.40:2500. This native contact point is wrapped in a listener object.
Above this object is a multiplexing listener object. As in the connectionless case, the
multiplexer defines local multiplex ports and maps these onto the listener object (and

4.1. OBJECT SERVER 107

native contact point) below it. The address of a multiplexed port consists of the multiplex
port number and the underlying native contact point’s address. Thus, for example, given
a native contact point with address 130.37.16.40:2500, the address for multiplex port
7000 would be: 130.37.16.40:2500:7000

Communication
Object

LR

Light-Weight

Multiplexing
Listener

TCP/IP listen socket

Listener

Listener Object

LR

Light-Weight
Listener Object

multiplex ports

Figure 4.12: Objects involved in multiplexing a connection oriented contact point.

Above the multiplexing listener object are light-weight listener objects. A light-
weight listener object hides the multiplexing details from its user by presenting a standard
listener interface. Each light-weight listener object defines a single light-weight contact
point that corresponds to a multiplex port managed by the multiplexing listener. The ad-
dress of a light-weight contact point is the address of the light-weight listener’s associated
multiplex port.

To connect to a particular light-weight contact point a client must use multiplex-aware
connector objects as shown in Figure 4.13. There are three such objects, corresponding to
the three kinds of listener object, a light-weight connector, a multiplexing connector,
and a native connector. At the bottom of the figure the native connector is encapsulated in
a connector object. In this example the native connector is a TCP/IP socket. In the middle
there is the multiplexing connector object that is responsible for initiating connections to
multiplexing listeners. At the top the light-weight connector hides multiplexing details
from its user.

108 CHAPTER 4. GLOBEDOC ARCHITECTURE DETAILS

Communication
Object

LR

Light-Weight

Multiplexing

LR

Light-Weight
ConnectorConnector

Connector

Connector

TCP/IP socket

multiplex ports

Figure 4.13: Objects involved in multiplexing a connection oriented connector.

4.1. OBJECT SERVER 109

The process of connecting to a lightweight contact point is illustrated by the example
in Figure 4.14. In this example, the client LR invokes a connect method on its light-weight
connector, passing it a destination address consisting of a TCP/IP address and a multiplex
port (step 1). The light-weight connector extracts the multiplex port number and TCP/IP
address from the destination address, and passes these as arguments to the multiplexing
connector’s connect method (step 2). The multiplexing connector calls the underlying
connector object’s connect method to establish a TCP/IP connection with the destination’s
native TCP/IP listener (step 3). When the listener receives the connection request it cre-
ates a new connection object (and new native communication endpoint) that is associated
to a new connection object (created by the connector object) on the sender’s side (step 4a).
A reference to the new connection object is returned to the multiplexing connector on the
sender side and the multiplexing listener on the receiver side (step 4b). The multiplexing
connector object (on the sender side) now sends the destination multiplex port number
over this connection (step 5a). At the same time it also passes a reference to the newly
created connection object to the light-weight communication object that initiated the con-
nect request (step 5b). When the multiplex port number arrives on the receiver’s side it is
passed up to the multiplexing listener (step 6). The multiplexing listener then contacts the
light-weight listener associated with this multiplex port number and passes it a reference
to the newly created connection object (step 7). The light-weight communication objects
can now use the connection objects to communicate with each other. Note, that in this
example the communication endpoints are not multiplexed, only the contact points are
multiplexed.

Listener

LR

Light-Weight
Listener Object

Communication
Object

Multiplexing
Connector

Connector

TCP/IP socket

Object
Connection

Sender Receiver

TCP/IP listen socket

LR

Light-Weight
Connector

Communication
Object

Multiplexing
Listener

Object
Connection

6

75b

4a 4a

4b

2

1

3

3

Connection
Object

Connection
Object

5a

4b
5a

Figure 4.14: Example of connecting to a connection oriented multiplexed contact point.

110 CHAPTER 4. GLOBEDOC ARCHITECTURE DETAILS

Multiplexed Communication Endpoints

For the sake of completeness we briefly mention multiplexed communication endpoints.
Note however, that neither their design nor their implementation form a part of the Globe-
Doc architecture.

As in the case of multiplexed contact points, multiplexing communication endpoints
involves creating multiple communication endpoints that make use of a single native com-
munication endpoint. Multiplexing of communication endpoints is useful in object servers
that contain many LRs that create connections to peers on a small set of other object
servers. In the nonmultiplexed case, this would cause each object server to allocate a
large number of native communication points. If the number of hosted LRs is great, then
the underlying platform may run out of native communication endpoints. Multiplexing of
the communication endpoints greatly reduces the number of native communication end-
points allocated by the object server. Note, that multiplexing of communication endpoints
is necessary only for connection-oriented communication. In the case of connectionless
communication, multiplexing of communication endpoints is equivalent to multiplexing
of contact points.

Communication-Object Manager

The communication-object manager is a Globe runtime system object that allows mul-
tiplexer objects (i.e., multiplexing listener, multiplexing connector, and connectionless
multiplexer object) to be shared by LRs. The communication-object manager is installed
under a well-known name in the LNS so that all light-weight communication objects can
easily find it. When a light-weight communication object requires access to a multi-
plexer object it requests a reference to one from the communication-object manager. The
communication-object manager keeps track of existing multiplexer objects in an internal
table. Each entry in this table represents a multiplexer object and includes information
about the native contact point used, the protocol stack implemented and a reference to the
actual multiplexer object. If the communication-object manager cannot find an appropri-
ate multiplexer object, such an object must be created by the light-weight communica-
tion object requesting it. Once created the new multiplexer object is registered with the
communication-object manager. The communication-object manager allows multiplexer
objects to be looked up based on their native contact point address, the protocol stack they
support, or both.

Persistent Contact Points

Persistent contact points are implemented as multiplexed contact points and are there-
fore accessed through light-weight communication objects. In order to prevent other (non-
persistent) multiplexed contact points from using a persistent contact point’s multiplexer
object and native contact point, the persistence manager may request the communication-
object manager to reserve all addresses that may be used by persistent contact points.
Reserving a contact point results in the creation of a native contact point for the reserved

4.2. IMPLEMENTATION REPOSITORY 111

address. It also results in the creation of a multiplexer object associated with that na-
tive contact point. A multiplexer object used for persistent contact points may also be
requested to reserve multiplex ports corresponding to those used by the persistent contact
points.

4.2 Implementation Repository

The implementation repository stores and provides access to LR implementations. It is
accessible as a local service through the Globe runtime system and provides an interface
with methods that map contact addresses and implementation handles to corresponding
implementations.

The implementation repository is generally used during the binding process after the
binder has selected an appropriate contact address. It is given the selected contact ad-
dress and maps it to the implementation of an LR capable of connecting to the given
contact address. Besides simply finding the appropriate implementation, the implementa-
tion repository also takes care of loading the code into an address space. It does this using
platform specific class loaders — runtime objects capable of loading implementations
into an address space.

Although it is always accessed locally, an implementation repository can be a local,
remote, or distributed service. An example of a local repository is one where the imple-
mentations are all stored on a local file system. A remote repository, on the other hand,
might be an FTP archive containing implementations. A distributed repository is one
where the implementations can be distributed (and possibly replicated) over many sites.

4.2.1 Class Archive

No matter how the repository is implemented, the code in an implementation repository
is always stored in class archives. A class archive is a container that stores all the code
that makes up the implementation of a single LR. The class archive is also the container
in which implementations can be transferred between processes (e.g., when downloaded
from a remote repository).

In the Globe runtime system a class archive is represented by a local object, the class
archive object. This local object provides methods that allow code to be added to, and
retrieved from, a class archive. Besides this object representation a class archive may also
have an external representation, that is, a representation that is accessible from outside
the Globe runtime system. A common external representation of a class archive is a
single archive file that contains all the individual platform-specific implementation files.
On the Java platform, for example, this could be a Java archive (jar) file containing Java
class files. On a Unix platform this may be a library file containing the appropriate (C
or C++) object code files. Such class archives can be accessed directly (by accessing the
file outside of the Globe environment) or through their associated class archive objects.
In this case the class archive object is simply a wrapper that performs operations on the
associated archive file. A class archive may, however, be implemented as a class archive

112 CHAPTER 4. GLOBEDOC ARCHITECTURE DETAILS

object, with no external representation. In this case, the class archive object would store
all the implementation code in main memory and could not be accessed from outside the
Globe runtime system.

Besides providing access to implementation code, a class archive object also provides
access to a class loader capable of loading the code contained in the class archive. For
example, a Java jar format class archive must provide access to a class loader that can
open a jar file, extract the appropriate Java class files and load them into the virtual ma-
chine. Class loaders and the class loading process will be examined in more detail in
Section 4.2.3.

Along with implementation code, a class archive also contains an implementation
catalog. The catalog contains information needed by a class loader to load and create an
LR. It describes the subobjects that make up the LR and where (in the class archive) their
implementations can be found. The catalog contains one record per subobject, with each
record containing fields that specify the subobject name, the location of the implementa-
tion code (e.g., a Java class file name, a C object file name, etc.), the role the subobject
plays in the LR (i.e., control, semantics, replication, communication, LRManager, etc.)
and subobject-specific initialization parameters. An example of a part of an implementa-
tion catalog is shown in Figure 4.15.

ObjectName: vu.Globe.GlobeDoc.GlobeDocumentImp.gdControl
ClassObject: vu.Globe.GlobeDoc.GlobeDocumentImp.gdControlClassObject
FileName: /vu/Globe/GlobeDoc/GlobeDocumentImp/gdControlClassObject.class
Position: control

ObjectName: vu.Globe.Runtime.lr.replication.replServer
ClassObject: vu.Globe.Runtime.lr.replication.replServerClassObject
FileName: /vu/Globe/Runtime/lr/replication/replServerClassObject.class
Position: replication
ReplicationPolicy: Client-Server
ReplicationRole: Server

Figure 4.15: Fragment of a catalog file.

This fragment shows two records. The first specifies a control subobject and the sec-
ond a replication subobject. Each record specifies the name of the Java class file con-
taining the subobject’s implementation code, as well as the Java object names of the
corresponding Globe class object and Globe local object. The second record includes
some extra information about the replication subobject such as the replication policy it
implements and which role it plays in that policy.

The interfaces implemented by class archive objects are presented in Table 4.8 and
Table 4.9.

ClassArchEntry is an interface for accessing the information contained in a class
archive’s implementation catalog. A classArchEntry describes a single record in the class
archive (i.e., a subobject implementation). A record in the implementation catalog is pre-
sented as a set of attribute-value pairs, and the value of a particular field can be retrieved

4.2. IMPLEMENTATION REPOSITORY 113

interface classArchEntry

method getValue Retrieves the value of a particular field
in fieldName The field name
returns The value
method getName Retrieves this entry’s name
returns The name
method getAllFieldNames Retrieves a list of all fields in this entry
returns The fields in the entry

Table 4.8: The classArchEntry interface.

interface classArch

method getEntries Retrieves a list of the entries contained in this archive
returns A list of classArchEntry objects
method getMainEntry Retrieves the archive’s main entry
returns The main entry
method addEntry Adds an entry to the archive
in name The name of the entry to add
in ent The entry data
method deleteEntry Removes an entry from the archive
in name The name of the entry to delete
method modifyEntry Modifies an entry in the archive
in name The name of the entry to modify
in ent The entry data
method getClassLoader Retrieves a reference to a class loader that can load this

class archive
returns A reference to a class loader

Table 4.9: The classArch interface.

114 CHAPTER 4. GLOBEDOC ARCHITECTURE DETAILS

by passing the field name to the getValue method. The getName method returns the subob-
ject’s name, while the getAllFieldNames method returns a list of all the fields in a record.

A class archive object implements the classArch interface. The getEntries method reads
the information in the catalog and returns it as an array of classArchEntrys. An entry
representing the whole LR (the LRManager subobject) can be retrieved by invoking the
getMainEntry method. The addEntry, deleteEntry, and modifyEntry methods are used to manip-
ulate the contents of a class archive. A reference to a class loader suitable for loading the
implementations contained in this class archive is returned by the getClassLoader method.

An important point of discussion relating to class archives is whether all the code
needed by an LR (that is the code of all its subobjects) must be contained in a single
class archive or whether it may be spread out over multiple archives. The issues involved
are similar to those encountered when comparing static and dynamic code libraries on
systems such as Unix and Windows.

Monolithic class archives, those that contain all the necessary code in a single class
archive, have the advantage that they give the object creator more control over exactly
which code will be used in an LR implementation. This means that the object creator
can test all components to make sure they work and perform as expected, and can prevent
undesirable combinations of subobjects. Similarly, all required code is in a single class
archive, so there is no possibility of missing code leading to the loading of a partially
complete implementation.

A drawback of monolithic class archives, however, is that the resulting class archives
are much bigger than necessary. For example, rather than sharing a single class archive,
all Globe objects using a popular implementation of a replication subobject must include
the code for that subobject in their own class archives. Because separate archives must be
created for every valid combination of subobjects, this not only leads to bloated archives,
but also to an increase in the number of available archives.

Modular class archives, those that contain only some of the subobjects needed by
an LR, besides decreasing the number and size of class archives, also allow code to be
updated dynamically. For example, suppose a bug is found and fixed in the code of a
popular replication subobject. When modular class archives are used it is sufficient to
update that replication subobject’s class archive. All LR implementations that refer to
that class archive will automatically load the new code the next time they are loaded. If
monolithic class archives are used all class archives that contain the insecure code must
be individually updated.

The downside of modular class archives is that combinations of subobjects may be
loaded that an object creator had not envisaged, or explicitly wanted to prevent. These
may cause problems such as a malfunctioning object or security problems.

Because neither the monolithic or modular approach is ideal in all situations, we allow
class archives to be either monolithic or modular. In the case of modular class archives,
information about the actual archives needed to load a complete LR is included in an
object’s contact address.

4.2. IMPLEMENTATION REPOSITORY 115

4.2.2 The Repository

The implementation repository is implemented as a local Globe object that implements
the classRepository interface presented in Table 4.10.

interface classRepository

method getArchiveCA Given a contact address, finds and loads an appropriate
implementation

in ca The class object
returns A reference to a Globe class object that can create in-

stances of an appropriate LR
method getArchiveIH Given an implementation handle, finds and loads an ap-

propriate implementation
in ih The implementation handle
returns A reference to a Globe class object that can create in-

stances of an appropriate LR
method getClassObject Loads an implementation from a previously loaded class

archive
in name The class name
returns A reference to a Globe class object corresponding to the

given name

Table 4.10: The classRepository interface.

The getArchiveCA method is used during the binding process. After the runtime system
selects an appropriate contact address, it invokes this method to load an appropriate local
representative for the given Globe object. It takes the Globe object’s contact address
as a parameter and returns an interface to a Globe class object that can create a local
representative for the Globe object. The getArchiveIH method is similar to getArchiveCA,
except that it is given an implementation handle directly and does not need to extract one
from a contact address. The getClassObject method is used to load an implementation from
a previously loaded class archive (this method exists to support lazy loading of code, the
details of which will be described later). it is given a class name and returns an interface
of the class object corresponding to that name.

Contact Addresses and Implementation Handles

A contact address, as described in the previous chapter, identifies where and how a Globe
object can be contacted. It consists of a network address and a protocol identifier. In
GlobeDoc this protocol identifier contains an implementation handle and initialization
data. The implementation handle is an identifier that specifies a particular LR implemen-
tation and the location where a class archive containing a suitable implementation can be
found. The initialization data is used to create and initialize instances of the LR once its
code has been found and loaded.

116 CHAPTER 4. GLOBEDOC ARCHITECTURE DETAILS

The format of an implementation handle is generally dependent on the repository that
contains the corresponding class archive. Simple repositories might encode the location
of a class archive directly in the implementation handle. More complex implementation
repositories might include an object type or class name in the implementation handle, and
map this type or name to an appropriate class archive depending on, for example, the
platform and the various implementations available for that platform.

Currently, four types of implementation handles have been defined. The first, for lo-
cally available class archives, consists of a file: URL that contains the local path name
of a class archive. The type of the class archive is determined by the filename’s suf-
fix. For example, file:///usr/local/share/globe/repository/MyGlobeDoc.jar specifies
a locally available Java jar class archive. The second type of implementation handle,
for remotely available class archives, consists of an HTTP or FTP URL that specifies
where and on what host the class archive can be found. For example, http://globe.cs.
vu.nl/globe/repository/MyGlobeDoc.jar specifies a Java jar class archive available at
globe.cs.vu.nl. The third type of implementation handle consists simply of a class or
type name, such as class:JAVA:vu.globe.globeDoc.globeDocumentImp.gdLRImp. It
is up to the implementation repository to find an appropriate class archive that implements
this class. Finally, the fourth type of implementation handle is a composite implementa-
tion handle that refers to multiple class archives, all of which are needed to load the code
required by a single LR. Figure 4.16 shows an example of such an implementation han-
dle. Note that the implementation handle specifies only class archive locations. It does not
specify what types of subobjects are contained in those archives, nor the role that these
subobjects play in the final LR implementation. This information is contained in each
individual archive’s catalog file.

http://globe.cs.vu.nl/globe/repository/GlobeDoc.jar;
http://globe.cs.vu.nl/globe/repository/MSRepl.jar;
http://globe.cs.vu.nl/globe/repository/TCPComm.jar

Figure 4.16: A composite implementation handle.

The initialization data included in a contact address is used to initialize an instance
of an LR. It may include information such as the LR’s role in the GlobeDoc object (e.g.,
client, replica, master, etc.), initialization data for the various subobjects (e.g., buffer sizes,
etc.) as well as network addresses of other LRs to contact. There is no general format for
this initialization data, it is up to the LR implementation to interpret it.

Retrieving a class archive

Given an implementation handle, the implementation repository must find a suitable class
archive and load the code contained in it. Figure 4.17 shows the parts of the repository
and the steps involved in retrieving a class archive and loading an object implementation.

Internally, the implementation repository consists of three parts: the repository table,
the repository resolvers and the class archive pool. The repository table is where the

4.2. IMPLEMENTATION REPOSITORY 117

Implementation Repository

Class Loader

Resolver

Repository

remote repository

Resolver

Repository local repository

Resolver

Class Archive Pool

Table
Repository

Repository

7

3
1

2

6

5 4

Figure 4.17: Implementation repository and the class loading process.

118 CHAPTER 4. GLOBEDOC ARCHITECTURE DETAILS

repository maintains mappings of object names to the class archives that contain their im-
plementations. This table contains an entry per (local) object, with each entry containing
an implementation identifier (e.g., in Java, the full Java object name), an implementation
file reference (e.g., the name of a file inside the class archive), the implementation handle
associated with the class archive, and the location of the class archive (e.g., an interface
to the class archive object, or the path of a class archive file’s location on the local file
system).

Repository resolvers are local interfaces to remote repositories. The remoteRepository

interface (see Table 4.11) defines a single method, get, which is used to retrieve a class
archive from a remote repository. This method accepts a class archive name, the address
of a remote server, and authentication information. A repository resolver fetches a class
archive from the given remote repository and returns a reference to a local class archive
object. The repository resolver interface can also be used to retrieve class archives from
local repositories. In this case the server information is left blank. An implementation
repository contains repository resolvers for the various types of implementation handles
that it supports. Examples of repository resolvers include resolvers for file: implemen-
tation handles, ftp: implementation handles, http: implementation handles, class: imple-
mentation handles and composite implementation handles. The implementation reposi-
tory keeps a table that maps between implementation handle types and the appropriate
resolvers. The implementation repository also keeps track of addresses for the remote
repositories that it knows about.

interface remoteRepository

method get Retrieves a class archive from a remote repository
in name The class archive name
in server The address of a remote server
in authname The name to authenticate with
in authpass The password corresponding to the name
returns A reference to a local class archive object

Table 4.11: The remoteRepository interface.

The class archive pool is where class archive objects are stored after they have been
loaded through repository resolvers. A class archive object must be kept until the imple-
mentation contained in it has been fully loaded (see the section on lazy loading for details).
Once an implementation has been fully loaded, the class archive is no longer needed be-
cause instances of the associated object can be created using the associated Globe class
objects.

Loading an implementation

The class loading process starts with a call to one of the repository’s getArchive methods
(step 1 in Figure 4.17). The implementation handle (extracted from the contact address
parameter if necessary) is used as a key into the repository table to see if a required class

4.2. IMPLEMENTATION REPOSITORY 119

archive is already loaded (step 2). If this is the case, then the process moves on to step 6.
Otherwise, if the class archive is not yet loaded, the repository must fetch it using one
of the repository resolvers. The repository chooses a resolver and uses it to fetch a class
archive (step 3). In the case of a local repository the resolver fetches the archive from the
local file system, creates a class archive wrapper object around it and returns a reference
to this object. In the case of a remote repository the resolver must first contact the remote
repository to fetch the class archive file before wrapping it in a class archive object. Once
it has a reference to the class archive object, the repository stores a reference to the object
in the class archive pool (step 4), and registers the archive in the repository table (step 5).
Next the repository gets a reference to a class loader from the archive and requests the
class loader to load the code contained in the archive. The class loader loads the code and
creates a Globe class object for the main subobject (step 6). If an appropriate class object
already exists, i.e., the code was already loaded, then the class loader simply returns a
reference to that class object. Finally, the repository returns a reference to the Globe class
object (step 7).

The steps taken while loading code from a class archive using a class loader are shown
in more detail in Figure 4.18. In this figure, the repository starts by retrieving informa-
tion about the class archive’s main entry and a reference to a class loader that can load
this archive’s code. The repository then calls the class loader’s load method to load the
archive’s main entry. If lazy loading is not implemented then the repository proceeds to
load the rest of the code contained in the class archive. Otherwise, it simply registers
information about the rest of the subobjects in the repository table.

load(main entry)

load(entry), repeated

Sequence of
classArchEntry

getEntries()

getMainEntry()

classArchEntry

getClassLoader()

ClassLoaderClassArchRepository

Figure 4.18: Steps involved in loading the code from a class archive.

When the repository’s getClassObject method is called, the repository looks in the local
name space to see if a Globe class object for the given object name already exists. If such

120 CHAPTER 4. GLOBEDOC ARCHITECTURE DETAILS

a class object already exists, then a reference to it is returned. If one does not exist, the
repository looks in the repository table to see if an appropriate class archive is known.
If this is the case then that class archive’s class loader is requested to load the code and
create the Globe class object. A reference to the new class object is then returned. If an
appropriate class archive cannot be found then an error is returned.

Lazy Loading

For performance reasons an implementation repository might decide not to load all the
code in a class archive at once. Sometimes only the required local objects for creating a
local representative (usually the LRManager subobject) are loaded right away, while the
rest of the subobject implementations are loaded later on when they are actually required.

Some systems allow code to be loaded on demand, that is, the system will automati-
cally load code when it is needed. In Java, for example, if an object P accesses or refers
to an unloaded object Q, the code for that object Q will be loaded by the system using the
same class loader that loaded object P. This way, once the Globe runtime system loads a
subobject P from a class archive, the loading process of other subobjects used by P can be
delegated to the Java virtual machine, and the repository does not have to explicitly load
those subobjects. The repository must, however, make sure that the implementation code
remains available until the object has been completely loaded.

Unfortunately, not all platforms provide dynamic loading mechanisms. On these plat-
forms the repository table plays an important role in implementing lazy loading func-
tionality using the getClassObject method. By keeping track of which class archives con-
tain which subobjects, the repository can find and load the appropriate code whenever
getClassObject is called. Whether or not a class archive’s code is loaded using lazy loading
depends on the implementation of the implementation repository.

4.2.3 Class Loader

The class loader is a Globe runtime object responsible for loading code into the address
space and instantiating and initializing a Globe class object from that code. The class
loader is class archive and platform specific, that is, every combination of class archive
type and platform requires a unique class loader. A class loader does, however, imple-
ment a well defined interface. This interface allows new class archive formats and their
associated class loaders to be added to a Globe system without requiring modifications to
existing code.

Table 4.12 presents the classLoader interface. This interface defines only one method,
the load method. It loads the code for a given class from a class archive, creates the
Globe class object for that class and returns a reference to that class object. The Globe
class object can later be use to create local objects of that class. There is one-to-one
correspondence between a class loader and its associated class archive which is why the
load method does not require the specification of a class archive from which to load the
code.

4.3. CLIENTS 121

interface classLoader

method load Loads the code for a given class from a class archive
in classname The name of the class to load
returns A reference to a class object

Table 4.12: The classLoader interface.

Java Jar File Class Loader

The Java jar file class loader is an example of a platform and class-archive specific class
loader. In Java, dynamically loading code is a rather simple process because the Java
platform provides built-in support for dynamic loading of code. The class loader’s load
method reads the jar file and finds the Java class file corresponding to the given class name.
It then reads this class file into memory and calls Java’s standard java.lang.ClassLoader.
defineClass method. This causes the code to be loaded into the virtual machine and a
Java class object associated with the given class name to be created from the code.

4.3 Clients

The success of GlobeDoc is largely dependent on the ability of client applications, such as
Web browsers, to access GlobeDoc content. Client access to GlobeDoc content should be
transparent, that is, the difference between accessing regular Web content and GlobeDoc
content should be minimal if not imperceptible. Accessing GlobeDoc content should be
as efficient, if not more efficient, than accessing regular Web content. Finally, methods for
accessing GlobeDoc content should be nonintrusive (e.g., not involve user intervention or
complicated setup procedures) and easy to use so that GlobeDoc content can be accessed
by anyone capable of accessing regular Web content.

There are two main categories of GlobeDoc clients to consider. GlobeDoc-aware
clients are applications that are able to directly access GlobeDoc objects. GlobeDoc-
unaware clients are applications that have no knowledge of GlobeDoc and cannot directly
access GlobeDoc objects.

4.3.1 GlobeDoc-aware Clients

To be GlobeDoc aware, a client application must be able to do two things. It must be able
to resolve GlobeDoc URNs and it must be able to bind to a GlobeDoc object and invoke
that object’s methods. The most interesting kind of GlobeDoc-aware clients are custom
made or modified Web browsers. Other specialized GlobeDoc-aware clients (such as tika,
a GlobeDoc management tool which was developed as part of the GlobeDoc project) also
exist, but these do less to help integrate GlobeDoc with the existing Web.

In a GlobeDoc-aware Web browser the difference between content from GlobeDoc
objects and content from the Web should be completely transparent. A GlobeDoc-aware
browser should handle GlobeDoc URNs in the same fashion as it handles other Web URIs

122 CHAPTER 4. GLOBEDOC ARCHITECTURE DETAILS

(such as HTTP or FTP URLs). There should also be no difference in display of content
accessed from a GlobeDoc object or from the Web itself.

Custom Clients

There are a number of possible approaches to making GlobeDoc-aware clients. One of
these approaches is to build a client from scratch. The benefits of this approach are that we
retain full control over the application features and architecture. This allows GlobeDoc
to be supported from the ground up, meaning that GlobeDoc-specific features can be
integrated into the architecture of the client, not added as mere afterthoughts. GlobeDoc-
related features incorporated in such a client might include: caching of GlobeDoc object
bindings for improved performance, GlobeDoc replica hosting services, and management
functionality similar to that offered by tika, the standard GlobeDoc management tool.

Unfortunately, building a GlobeDoc-aware browser from scratch also has its draw-
backs. The main drawback is that building such a browser takes a lot of work. Not only
do GlobeDoc-specific parts and features need to be implemented, but so does the general
Web browser functionality (e.g., HTML rendering, HTTP support, JavaScript support,
etc.). In general implementing a modern Web browser is a complex task. The Mozilla
Web browser, for example, contains over two million lines of code and took a large team
years to develop. Compatibility with existing browsers poses another problem. Currently,
Web designers already deal with at least three somewhat incompatible browsers. This
means that, in order to create pages that work in a majority of browsers, Web designers
must test their work in at least three different browsers. Adding yet another browser to
this list would make the Web designer’s job even more difficult. As such, Web designers
generally ignore any new browsers arguing that the new browser’s small user base is not
worth the effort it takes to assure compatibility. Requiring users to change browsers in or-
der to access GlobeDoc content is very intrusive and will stand in the way of wide-spread
adoption of GlobeDoc and GlobeDoc-aware browsers. A further drawback is that, even
if the browser was 100% compatible with all existing browsers and Web sites, most users
will switch browsers only if the new browser offers enticing features not available in their
browser of choice. It is doubtful whether GlobeDoc support is such a feature.

Although it is not practical to build GlobeDoc-aware Web browsers from scratch, it
is possible to build smaller, special-purpose GlobeDoc-aware applications and tools. One
example of such an application is (the previously mentioned) tika, a GlobeDoc manage-
ment tool. Tika allows users to create and destroy GlobeDoc objects as well as manage the
contents of those objects. Other useful tools include content fetching tools which provide
a simple way to access and download a GlobeDoc object’s contents. Such a tool could, for
example, be used to make GlobeDoc-aware scripts. Likewise, a GlobeDoc client library,
which provides functions for binding to and accessing GlobeDoc objects, could provide
interested parties an easy way to create specialized GlobeDoc-aware applications.

4.3. CLIENTS 123

Applets and Plug-ins

Another approach to creating GlobeDoc-aware browsers is through GlobeDoc applets or
browser plug-ins. An applet is a small (usually Java) program that can be run within a
Web browser. It is downloaded from a Web server and executed by the browser. For secu-
rity purposes, applets are usually run in a sandbox, which limits their access to most local
resources. They do, however, have access to screen space and basic browser functionality.

A GlobeDoc-aware applet contains code (including parts of the Globe runtime system)
that lets it bind to GlobeDoc objects and access their contents. Because of its limited
access to browser functionality a GlobeDoc applet must also contain code that allows the
elements (e.g., HTML pages, images, etc.) to be displayed in the browser.

The applet approach is interesting because it is unintrusive, that is, users do not have to
change or patch their browsers, the applet code can be automatically downloaded and ex-
ecuted. The applet should also work in all Java enabled browsers, which includes almost
all modern and widely-used browsers. Similarly, a single applet will work on multiple
operating systems and hardware platforms as long as an implementation of the Java envi-
ronment exists for that combination of operating system and hardware platform.

A problem with the applet approach is the fact that applets are generally limited in
their use of local resources. In particular, applets may establish communication channels
only to the host where the applet was downloaded from. Applets also have limited (if
any) access to local resources such as local file systems. These restrictions may be re-
laxed if the downloaded applet is signed with a trusted certificate and given appropriate
rights. Another drawback of the applet approach is that applets generally do not have re-
liable access to a browser’s HTML rendering engine. This means that a GlobeDoc applet
must contain its own code for rendering content acquired from a GlobeDoc object. As
mentioned earlier, HTML rendering code is generally quite complex and would greatly
increase the size of any applets containing it. Likewise, it may introduce incompatibilities
with a browser’s native HTML rendering engine.

The biggest problem facing the applet is a bootstrap problem. In order to load a
document from a GlobeDoc object a user must first download a GlobeDoc applet. The
problem is where to find the applet. A possible solution would be to create a regular
HTML page that references the GlobeDoc-aware applet and have users load that page
first whenever they come across a GlobeDoc URN. This HTML page causes the applet to
be loaded after which the user may enter a GlobeDoc URN causing the applet to retrieve
and display the corresponding GlobeDoc object’s contents. Requiring users to perform
an extra action (loading the applet page) to access GlobeDoc URNs is neither transparent
nor easy to use and is therefore not a good solution to the problem. Variations of this
solution are possible, however, all require some explicit user action which makes them
nontransparent and therefore undesirable.

Similar to an applet, a browser plug-in is a small program module that a browser
runs to display a particular type of content. Generally, a plug-in is associated with a spe-
cific type of content (i.e., a MIME type). When content of that type is downloaded by
the browser, the browser finds an appropriate plug-in and passes control to the plug-in
code. The plug-in is responsible for reading and displaying the content. For example, to

124 CHAPTER 4. GLOBEDOC ARCHITECTURE DETAILS

display a QuickTime movie a browser must first load a QuickTime movie plug-in. The
plug-in is responsible for reading the QuickTime movie file and playing the resulting
movie in the browser window. Whereas applets are usually provided by content providers
themselves, a plug-in is generally provided by a single software developer while content
providers provide content that can be displayed using that particular plug-in. The Quick-
Time plug-in, for example, is created by Apple and must be downloaded from Apple’s
Web site. Because plug-ins are provided from central, generally trusted, sources, they are
usually allowed access to more local resources including networking facilities and local
file systems.

A GlobeDoc plug-in is a plug-in that is capable of binding to and requesting elements
from a GlobeDoc object. Like an applet, a GlobeDoc plug-in is also responsible for
displaying the GlobeDoc content. In order for the GlobeDoc plug-in approach to work,
a browser must recognize GlobeDoc URNs and pass these on to the GlobeDoc plug-in.
Most browsers support recognition of content type based on file extensions or reported
MIME types. Generally, however, browsers do not support recognition of URI types
based on their scheme identifier. This is a large obstacle to implementing and deploying
GlobeDoc plug-ins. The plug-in approach also shares other problems with the applet
approach, namely that it may be limited in its access to browser resources such as the
HTML rendering engine.

Because most plug-ins are implemented in C or C++ another drawback of the plug-in
approach is that a separate plug-in must be implemented for each combination of sup-
ported platform and browser (e.g., separate plug-ins for Netscape on Linux, Netscape on
Windows, Internet Explorer on Windows, etc.).

Extending Existing Clients

A third approach to creating a GlobeDoc-aware browser is to extend an existing, widely-
used, browser. There are two ways of doing this. The first involves directly modifying
source code to add GlobeDoc support into the browser. The second involves creating
dynamically loadable modules, which modify a browser’s behavior without having to
directly modify its code.

Directly modifying a browser’s code can be done only with browsers whose source
code is available for modification, or in cooperation with the browser’s vendor. In the ab-
sence of cooperation with a browser’s vendor, this approach currently excludes two pop-
ular browsers, Internet Explorer and Opera, leaving Mozilla (and Mozilla-based browsers
such as Netscape, Galeon, etc.) and Konqueror as the candidate browsers. Although it
limits the choice of browsers, being able to modify browser code directly offers a lot of
flexibility. By doing so, any extra code or functionality required for GlobeDoc support can
simply be made part of the browser. Likewise, if necessary, the browser architecture may
be altered (to a small degree) to allow better integration with GlobeDoc. Unlike creating a
browser from scratch, however, it is not necessary to redesign or implement nonGlobeDoc
related functionality such as the HTML rendering engine.

Browser modifications can be distributed as separate patches or merged into the of-
ficial browser distributions. Due to the complexity and space requirements of compiling

4.3. CLIENTS 125

a browser, users generally rely on binary distributions of browsers and rarely build them
from source. Because of this, distributing source code patches is not a feasible way to
widely distribute a GlobeDoc-aware browser. Merging GlobeDoc specific changes into an
official browser distribution requires convincing maintainers of the code that the changes
are indeed beneficial and justify the extra maintenance work that their inclusion entails.
Until GlobeDoc becomes widely used, this may not be easy to do. A third option is to
create and maintain a separate GlobeDoc-aware distribution (or fork) of the browser soft-
ware. Besides the fact that this may not be possible due to license constraints, it also
requires much maintenance and administrative work and is not a recommended solution.

Besides distributing the changes, another problem with directly modifying existing
code is that users must upgrade their browsers to take advantage of GlobeDoc function-
ality. Users who do not upgrade will still be unable to access GlobeDoc content. A final
problem is that, to achieve wide coverage, multiple browsers need to be modified. This
requires a large programming and maintenance effort.

A different approach to modifying existing Web browsers involves creating protocol
handler plug-ins in the form of dynamically-loadable code modules. A dynamically-
loadable code module allows functionality to be added to a browser without requiring the
browser’s source or binary code to be modified. Such a module is dynamically loaded by
the browser either at startup or later when the module’s functionality is first needed. In
this way, dynamically-loadable modules are similar to the content-specific browser plug-
ins described above, except that they are more general in nature (i.e., they are used for
more than just displaying content). A protocol handler plug-in is a module that handles
a particular type of URI (as identified by the URI’s scheme identifier). For example, a
mailto: handler would be responsible for handling all mailto: URIs. Part of this handler’s
functionality may be to start up a mail client, or to automatically send email to the address
specified in the URI.

A GlobeDoc protocol handler is responsible for handling GlobeDoc URNs. It is the
GlobeDoc protocol handler’s responsibility to split the URN into separate object and el-
ement names, bind to the object, retrieve the specified element’s contents and return this
to the browser. The browser is then responsible for displaying that element. The use of a
GlobeDoc protocol handler plug-in in a particular browser depends on the support offered
by that browser for dynamically loading modules. Although not all browsers support this,
a number of popular and widely used ones (Mozilla, Netscape, Internet Explorer, and
Konqueror) do.

The benefit of protocol handler plug-ins is that they make it much easier (for the devel-
oper and end user) to extend a browser’s functionality. The developer is presented with a
standard (but browser-specific) API to work with and does not have to be familiar with the
inner workings of the browser. Because none of the browser’s code is actually modified,
the developer is also freed from dealing with browser related maintenance issues. The end
user simply downloads and installs the plug-in to create a fully GlobeDoc-aware browser.
Once the plug-in is installed the user is offered full transparency. GlobeDoc content can
be accessed and used in the same ways as regular Web content.

One of the drawbacks of the protocol handler plug-in approach is that every browser
has its own, incompatible, plug-in format. This means that separate plug-ins must be

126 CHAPTER 4. GLOBEDOC ARCHITECTURE DETAILS

made for all browsers. Likewise, the APIs offered to plug-in writers are C or C++ APIs
which means that the plug-ins will be compiled to platform-specific binaries. As a re-
sult separate plug-ins must be created for every combination of supported platform and
browser. Another drawback of the protocol handler plug-in approach is that users who
have not downloaded the plug-in will not be able to resolve GlobeDoc URNs. The users
must somehow be made aware that the plug-in can be downloaded before being able to
resolve GlobeDoc URNs.

Mozilla protocol handler plug-in support. Mozilla (and many Mozilla based browsers
such as Netscape Navigator) offers two possibilities for adding protocol handlers. The
first involves associating a protocol handler plug-in with a given URI type. The protocol
handler is loaded and given control whenever a URI of that type is encountered. The
second possibility involves associating an application or server process with a given URI
type. The associated application or server process is responsible for handling URIs of that
type.

The first approach requires creating an nslProtocolHandler class and associated
nslChannel class. The nslProtocolHandler provides information about the protocol that it
is responsible for, as well as providing access to an appropriate nsChannel object when
needed. The nsChannel object provides a connection to the resource identified by a par-
ticular URI. For a GlobeDoc protocol handler, the GlobeDoc specific nslProtocolHandler

registers itself with Mozilla’s networking service and informs it that it is responsible for
handling GlobeDoc URNs. When a globe: scheme identifier is encountered, the Globe-
Doc specific nsProtocolHandler is called and asked to provide an nsChannel to the URN. The
GlobeDoc protocol handler creates an nsChannel object and returns it to the browser. The
browser then uses this nsChannel to access the resource associated with it. The nsChannel

object is responsible for binding to and accessing the specified GlobeDoc object. More
information about creating protocol handle plug-ins for Mozilla can be found in [94].

The second approach requires a third-party extension to Mozilla called Protozilla.
Protozilla is a Mozilla specific dynamically loadable module that allows URI scheme
identifiers to be associated with external programs or processes. By associating a URI
scheme identifier to an external program, whenever a URI with that scheme is encoun-
tered, the associated program is started and the URI is passed to it as a command-line
parameter. This program is responsible for accessing the resource specified by the URI
and returning its contents (preceded by a MIME header), to Protozilla where it is passed
on to the browser. Note that the actual contents (e.g., an HTML page, an text file, an im-
age file, etc.) and the format they are returned in are determined by the protocol handler.
When a URI scheme identifier is associated with an existing process, then whenever a
URI with that scheme identifier is encountered Protozilla opens a bi-directional commu-
nication channel to the associated process and sends it the URI. The process is responsible
for accessing the resource specified by the URI and returning it to Protozilla.

Creating a GlobeDoc-aware browser using Protozilla involves associating the globe:
scheme identifier with a GlobeDoc-aware content-fetching tool or a GlobeDoc proxy
server. A GlobeDoc-aware content fetching tool is a program that takes a GlobeDoc URN
as an argument, binds to the specified object, retrieves the specified element, and prints

4.3. CLIENTS 127

the contents of that element on standard output. A GlobeDoc proxy server is a process
that binds to and retrieves content from GlobeDoc objects on behalf of other GlobeDoc-
unaware processes. A drawback of the content-fetching tool is that it is restarted for every
GlobeDoc URN encountered. This means that it cannot store session information, and
must therefore rebind to an object every time that object is requested. Because binding to
an object is a time-consuming process this may cause performance problems. A Globe-
Doc proxy server, on the other hand, can cache GlobeDoc object bindings, thus avoiding
expensive rebinds every time an object is accessed. Another benefit of the proxy ap-
proach is that it is not bound to a single instance of a browser. It is, therefore, possible
that a GlobeDoc proxy server can act as a local cache to users on the same machine or
local network.

A particularly useful aspect of the Protozilla approach is that it does not impose im-
plementation language requirements on the GlobeDoc specific parts. Thus, for example,
it becomes possible to integrate a Java-based GlobeDoc environment into the C++ based
Mozilla browser without worrying about language incompatibilities. More information
about Protozilla can be found in [86].

Konqueror protocol handler plug-in support. Konqueror is a Web browser built for
the KDE desktop environment. Konqueror and most other KDE applications make use of
the KDE I/O (KIO) library to access external resources such as files and Web pages. The
KIO library uses separate modules called kioslaves to access different kinds of resources.
When opening a resource identified by a URI a KDE application passes that URI to the
KIO library. Internally, the KIO library keeps a list of known kioslaves and the scheme
identifiers that they are responsible for. When it receives a URI the KIO library extracts
the URI’s scheme identifier and finds an appropriate kioslave to handle that protocol. It
then starts the kioslave (as a separate process), passes it the URI and returns a reference
to the kioslave to the application. The application accesses the associated resource by
communicating with the kioslave.

Making GlobeDoc-aware KDE applications involves creating and registering a
GlobeDoc-aware kioslave. This kioslave will be responsible for handling all globe:
URNs. When given such a URN the kioslave must extract the object and element names,
bind to the object and retrieve the specified element. Note that, rather than directly bind-
ing to and accessing an object, a kioslave may also contact an existing GlobeDoc proxy as
described above. The benefits of such an approach are that GlobeDoc object bindings may
be cached, and bound objects may be shared between users. Note, also, that kioslaves of-
fer both read and write operations. It should, therefore, also be possible to use a kioslave
to update a GlobeDoc object’s elements as well as read them. More information about
kioslaves can be found in [79].

Internet Explorer protocol handler plug-in support. Like Mozilla, Internet Explorer
also offers two possibilities for adding protocol handlers. The first involves associating a
URI scheme identifier with an external application. All attempts to open a URI with that
scheme identifier cause the specified application to be launched. The second possibility is

128 CHAPTER 4. GLOBEDOC ARCHITECTURE DETAILS

to use the Asynchronous Pluggable Protocols API to associate a scheme identifier with a
protocol handler capable of accessing URIs of that type.

Associating a URI scheme identifier to an external application involves adding an
appropriate entry to the Windows registry in HKEY CLASSES ROOT. This entry spec-
ifies the scheme identifier as the key, and the application and application parameters as
the values. For GlobeDoc the key is globe: and the values specify an application that can
handle requests for GlobeDoc URNs.

Mapping a URI scheme identifier to a protocol handler involves creating a proto-
col handler using the Asynchronous Pluggable Protocols API. Such a protocol han-
dler is a COM object that handles any requests involving URIs containing the scheme
for which it registered. To register a protocol handler an entry must be added to the
Windows registry in HKEY CLASSES ROOT\PROTOCOLS\Handler\〈protocol
scheme〉 (where 〈protocol scheme〉 is replaced with the actual scheme identifier, for
example, globe:). The entry specifies the scheme identifier as the key and an identifier of
the protocol handler object class as the value.

Both of these approaches provide GlobeDoc support to any Windows applications that
use URL monikers to access URIs. It is likely, therefore, that adding a GlobeDoc protocol
handler in this way will also make applications other than Internet Explorer GlobeDoc-
aware. More information about the Asynchronous Pluggable Protocols API and extending
Internet Explorer can be found in [64].

4.3.2 GlobeDoc-unaware Clients

A GlobeDoc-unaware client is any client application that cannot resolve GlobeDoc URNs
and cannot directly bind to or access elements of a GlobeDoc object. Examples of
GlobeDoc-unaware clients include unmodified Web browsers, unmodified file managers,
search engine spiders, etc. In order to reach the goal of seamlessly incorporating Globe-
Doc into the existing Web infrastructure it is necessary to allow existing GlobeDoc-
unaware applications to access GlobeDoc contents as transparently as possible.

GlobeDoc Gateway

The most common way to allow GlobeDoc-unaware clients to access and use GlobeDoc
objects is through the GlobeDoc gateway. The GlobeDoc gateway is a GlobeDoc specific
HTTP server. It accepts HTTP requests for GlobeDoc URNs, binds to the appropriate
object, retrieves the specified element and returns that element’s contents as an HTTP
response.

Figure 4.19 shows an example of the GlobeDoc gateway in use. In step 1, the client
sends an HTTP request for a GlobeDoc URN to the gateway. There the object and element
names are extracted (step 2) and the gateway binds to the object (step 3). In step 4 it
retrieves the specified element’s contents and in step 5 returns these to the client as an
HTTP response.

Besides functionality for retrieving a GlobeDoc object’s elements, the GlobeDoc gate-
way also contains functionality to browse through the GlobeDoc name space. For ex-

4.3. CLIENTS 129

GlobeDoc Gateway

Location Service

Naming Service

region A1

B2
B1

A0

A1
A2

B0 C0

C1

PB
PCPA

R

region A0 region A2

region B1

region B0

region B2

region C0

region C1

region PA region PB region PC

region R

C

getContent("home.html")

1

2 object: /nl/vu/cs/globe/home/ikuz
element: home.html

5

4

home.html
element:

3

object: /nl/vu/cs/globe/home/ikuz

globe:/nl/vu/cs/globe/home/ikuz:/home.html

Figure 4.19: Example of a GlobeDoc gateway in use.

130 CHAPTER 4. GLOBEDOC ARCHITECTURE DETAILS

ample, when it receives a request containing an incomplete object name such as globe:
//nl/vu/cs/globe/, the gateway contacts the naming service to find out what objects that
part of the name space contains. The gateway then creates an HTML page containing
links to the root elements of all these objects and returns this page to the client. The links
to the objects are returned as GlobeDoc URNs.

For performance reasons the GlobeDoc gateway maintains a cache of object bind-
ings. This helps reduce the number of name-to-object binding operations for frequently
accessed GlobeDoc objects. In the GlobeDoc gateway, a cache entry expires (and the
corresponding GlobeDoc object is unbound from) if the corresponding object is not ref-
erenced within a given interval. More advanced caching and cache replacement strategies
that can be applied in the gateway will be discussed later in Section 4.3.5.

GlobeDoc Translator

A problem with the GlobeDoc gateway is that in order for it to be useful, a client appli-
cation must recognize that all requests for GlobeDoc URNs are to be sent to the gateway.
This is only possible if the client recognizes these URNs. Unfortunately, most GlobeDoc-
unaware clients do not know of, and are therefore unable to recognize, GlobeDoc URNs.

The GlobeDoc translator is meant as a solution to this problem. The GlobeDoc
translator is an HTTP server that accepts requests for embedded GlobeDoc URNs. Re-
call that an embedded GlobeDoc URN is is an HTTP URL that contains the address of
a GlobeDoc-aware HTTP server in its address part and a GlobeDoc object and element
name in its path part. For example: http://globe.cs.vu.nl/nl/vu/cs/globe/ikuz/home:
/projects.html refers to a GlobeDoc-aware HTTP server at globe.cs.vu.nl, an object
named /nl/vu/cs/globe/ikuz/home and an element named /projects.html. When it re-
ceives a request, the translator translates the embedded URN into a regular GlobeDoc
URN and forwards the request to an associated GlobeDoc gateway. When the gateway re-
turns the requested element contents, the translator transforms the results by replacing any
GlobeDoc URNs with embedded GlobeDoc URNs. The address part of these replacement
URLs contains the translator’s own address.

Besides acting as an HTTP server, the translator can also act as an HTTP proxy server.
In this case, the translator accepts all HTTP URLs and filters out any that it recognizes as
embedded GlobeDoc URNs. Embedded GlobeDoc URNs are processed by the translator
as described above, while all other URLs are forwarded to their respective servers. All
results, whether they come from the GlobeDoc gateway or regular HTTP servers, are
filtered for GlobeDoc URNs which are replaced by equivalent embedded GlobeDoc URNs
before being returned to the client.

The combination of a GlobeDoc translator and a GlobeDoc gateway is called a Globe-
Doc access point (GAP). Generally the gateway and translator of a GAP run on the same
machines and have the same IP addresses. They do, however, run on different TCP ports.
A GAP’s address is the same as its associated translator’s address.

4.3. CLIENTS 131

GlobeDoc Redirector

Use of a GAP allows GlobeDoc objects to be accessed from any HTTP enabled applica-
tion. There are, however, problems with referring directly to a particular GAP in embed-
ded GlobeDoc URNs. First, because a GAP’s address is included in the URL, there is
no longer any location transparency, nor is there any locality. A client resolving such an
embedded GlobeDoc URN will send its request to the GAP specified in the URL causing
the GAP’s gateway to bind to the associated object. If the client is far away (either ge-
ographically or network topologically) from that GAP then the locality provided by the
location service will be lost. Similarly, if an embedded GlobeDoc URN becomes widely
spread so that many clients access the associated GlobeDoc object using that URL (e.g.,
the embedded GlobeDoc URN is posted in a story on Slashdot), the translator and gateway
at the referenced GAP may become overloaded. Worse yet, the GlobeDoc object replica
used by the GAP’s gateway may become overloaded, while other replicas remain largely
unused. Another problem is that the GAP referenced in an embedded GlobeDoc URN
may form a single point of failure. If the GAP is down, or has moved to a new address,
the embedded GlobeDoc URN no longer useful as a reference to the associated GlobeDoc
element.

The GlobeDoc redirector solves these problems. It is an HTTP-server that redirects
clients to their nearest GAP (where the nearest GAP is defined as the GAP that is nearest
to a client in terms of geographical distance). To make use of the redirector, embed-
ded GlobeDoc URNs contain the redirector’s address rather than a specific GAP address.
When a client resolves an embedded GlobeDoc URN, a request is sent to the redirector.
Upon receiving a request, the redirector first converts the client’s IP address to a latitude
and longitude (e.g., by using the NetGeo [69] service). Next, the redirector calculates
the distance between the client and each known GAP and chooses the GAP closest to the
client. The redirector then sends a redirect message to the client, causing it to contact the
chosen GAP and request the GlobeDoc element there.

The redirector supports two methods for redirecting a client. The first method is to
return an HTTP redirect message to the client specifying an embedded GlobeDoc URN
containing the address of the selected GAP. The second method involves returning an
HTML page that immediately reloads an embedded GlobeDoc URN containing the ad-
dress of the selected GAP.

In addition to redirecting the client, the redirector also stores two HTTP cookies on
the client side. The cookies are used to improve the redirector’s performance by storing
previously calculated locations and GAP choices. The first cookie is called the GAP
cookie and contains the address of the client’s nearest GAP. The second cookie is called
the location cookie and contains the geographical coordinates associated with the client’s
IP address. When the redirector receives a request from a client that has these cookies set,
it will use the information from the cookies to redirect the client, rather than recalculating
everything.

Figure 4.20 shows an example of a GlobeDoc object’s element being requested
through the GlobeDoc redirector. In the first step the client sends a request to the redi-
rector for the embedded GlobeDoc URN: http://enter.globeworld.org/nl/vu/cs/globe/

132 CHAPTER 4. GLOBEDOC ARCHITECTURE DETAILS

ikuz/home:/projects.html (note that enter.globeworld.org is the redirector’s address).
The redirector converts the client’s IP address into a latitude and longitude and finds the
nearest GAP (step 2). Next, in step 3, the redirector returns a redirect page to the client,
passing it an embedded GlobeDoc URN containing the chosen GAP’s address. Finally, in
the last step, the client follows the redirect and sends a request to the address contained in
the new embedded URN.

globe.cs.vu.nl

GAP List

33globe.sdsc.edu

-76.5

-46.6

13.3

-116.8

42.4

52.5

52.3

48.9

-23.5

2.3

4.8

globe.cs.cornell.edu

globe.ime.usp.br

globe.cs.tu-berlin.de

globe.inria.fr

redirect page

 = 52.3 4.8
130.37.16.40

Redirector

GatewayTranslator

(globe.cs.vu.nl)GAP

globe.cs.vu.nl

1

2

3

4

C

Figure 4.20: Example of the GlobeDoc redirector in use.

4.3.3 GlobeDoc-aware Clients versus GlobeDoc-unaware Clients

While the GlobeDoc-aware approach allows true seamless access to GlobeDoc objects,
currently, the GlobeDoc-unaware approach is preferred as it allows unmodified clients to
access GlobeDoc content. Allowing unmodified clients to access GlobeDoc objects will
lower the threshold for use and deployment of GlobeDoc and thereby increase the chances
of its wider adoption.

4.3. CLIENTS 133

The drawback of the GlobeDoc-unaware approach is, however, that many more ser-
vices (e.g., gateways, translators, and the redirector) must be deployed and managed.
Clients that do not have GlobeDoc access points in their vicinity are also unable to fully
benefit from replication policies implemented by the GlobeDoc objects that they access.
Note, however, that deploying the services required for use by GlobeDoc-unaware clients
does not prevent future GlobeDoc-aware clients from being implemented and deployed.

4.3.4 Partially GlobeDoc-aware Clients

Besides fully GlobeDoc-aware clients and completely GlobeDoc-unaware clients, it is
also possible to have partially GlobeDoc-aware clients. Partially GlobeDoc-aware clients
are applications that recognize GlobeDoc URNs, but cannot actually bind to or interact
with a GlobeDoc object. An example of such a client is a Web browser that recognizes
GlobeDoc URNs but forwards all requests for these to a (preconfigured) GlobeDoc gate-
way. Although the browser does recognize GlobeDoc URNs, it is not responsible for
actually binding to the GlobeDoc object, the gateway takes care of this.

Another example of a partially GlobeDoc-aware client is one that rewrites Globe-
Doc URNs into embedded GlobeDoc URNs and uses these to access the desired Globe-
Doc content. Protozilla, the Mozilla plug-in mentioned earlier, makes it possible to
turn Mozilla into a such partially GlobeDoc-aware client. Protozilla offers a function
that allows URIs to be rewritten based on their scheme identifier and some user-defined
rules. For example, a possible rule for GlobeDoc URNs is to replace globe: with http:
//enter.globeworld.org. This transforms all GlobeDoc URNs into embedded GlobeDoc
URNs that refer to a GAP (or redirector) at enter.globeworld.org.

4.3.5 GlobeDoc Object Caching in Clients

All GlobeDoc-aware applications (including GlobeDoc-aware clients and the GlobeDoc
gateway) must bind to a GlobeDoc object in order to retrieve GlobeDoc content. Be-
cause binding is a relatively expensive procedure, applications generally cache bindings
to GlobeDoc objects. By caching object bindings, applications that frequently access
the same objects can avoid much of the performance degradation (due to the number of
lookups involved, the retrieving and loading of LR implementations, the fetching of state
from remote LRs, etc.) associated with (re)binding.

Applications retain bindings to GlobeDoc objects by storing object LRs in an object
reference cache. Due to Globe’s reference counting mechanism, as long as a counted ref-
erence to an LR exists, that LR cannot be removed by the Globe runtime system. As long
as a GlobeDoc object’s LR is available in an application’s address space, that application
is considered to be bound to the object and can access the object without having to rebind
to it.

Ideally, an application would be able to cache (and possibly prefetch) references to all
the GlobeDoc objects that it ever uses. Unfortunately, keeping a GlobeDoc object’s LR
in cache costs resources, such as memory, storage space, and network bandwidth, all of
which are usually available in a limited supply. This means that it is rarely possible for

134 CHAPTER 4. GLOBEDOC ARCHITECTURE DETAILS

an application to cache the LRs of all the GlobeDoc objects that are ever accesses. To
allocate the resources required by new GlobeDoc LRs a client may have to free up cache
space and other resources by unbinding from one or more previously cached GlobeDoc
objects.

Applications must also be able to place limits on the amount of resources that cached
LRs can consume. For example, an application should be able to limit the amount of
memory and disk space used by cached LRs. Similarly, an application might choose
to limit the amount of network traffic a cached LR may generate (for example, by only
caching objects that rarely send and receive messages). These kinds of limits can be
imposed on the whole LR cache or on individual LRs. Limits can be used to determine
which LRs to cache as well as to determine if the cache is full and whether some LRs
must be evicted to make room for new LRs.

When caching object bindings, besides taking the application’s requirements into ac-
count, it is also necessary to take the GlobeDoc object’s requirements into account. For
example, depending on its distribution policy, an object might place a limit on how long a
replica may be cached. Likewise an object’s owner must be able to destroy all its replicas,
including those stored in clients as cached object bindings.

Web Cache Replacement Policies

The problems involved in caching GlobeDoc object bindings are similar to those involved
with caching Web resources in the World Wide Web. The problem of Web cache re-
placement, and in particular cache replacement in Web clients and Web proxies, has been
widely studied and is well represented in the literature [20, 48, 90, 2]. Web cache replace-
ment has already been introduced in Chapter 2. This section will look in more detail at
particular strategies that can also be applied to the caching of GlobeDoc object bindings.

Studies of cache replacement policies are generally concerned with the size and re-
placement cost of the cached resources. In these studies the size of a resource refers to
how much cache space the resource takes up while the replacement cost refers to a value
representing the difficulty of bringing the resource (back) into the cache. The higher the
replacement cost, the more difficult it is to bring the resource into the cache. In the case
of Web caches, the replacement cost can be affected by numerous parameters such as the
latency of the connection to the resource’s originating host, the network bandwidth avail-
able, the resource size, etc. Traditional nonWeb cache replacement policies (e.g., those
used for virtual memory) deal with data that has a fixed size (e.g., memory pages) and
fixed replacement cost (e.g., accessing blocks on a local disk). When looking at Web
caches, on the other hand, the data (Web resources) does not have a fixed size, nor does it
have a fixed replacement cost. As such, it has been found that traditional cache replace-
ment policies are not well suited as Web cache replacement policies.

The job of a cache replacement policy is to determine which cached resources to
remove from the cache when a new resource must be inserted into a full cache. In general,
a cache replacement policy always attempts to minimize or maximize various cost metrics.
These cost metrics include the cache’s miss rate, its hit rate, the average (client) access
latency, total access cost, etc.

4.3. CLIENTS 135

It is important to note that the implementation of a cache replacement policy must
be reasonably efficient, otherwise much of the benefit of caching (quick access to Web
resources) is lost. It has been shown that determining the optimal replacement policy in
the off-line situation (i.e., when all requests are known before hand) is an NP complete
problem [48]. This means that there is no efficient optimal solution to the problem, in fact,
the performance of the optimal off-line algorithm degrades exponentially as the number
of requests grows. It is clear that the problem of determining the optimal replacement in
the on-line situation (i.e., when all requests are not known before hand) is harder than that
of the off-line situation. As such, it follows that the performance of any optimal on-line
algorithm will be similarly limited. To find efficient on-line cache replacement algorithms
it is therefore necessary to look at heuristic algorithms that approximate an optimal on-line
cache replacement policy.

Both Cao [20] and Hosseini [48] have proposed heuristic algorithms that take locality,
size, and replacement cost factors into account. Both algorithms are based on the concept
of specific cost, which is defined as the ratio of replacement cost over size. Specific cost
reflects the fact that a good replacement algorithm must take both a resource’s replacement
cost and size into account.

Hosseini, besides looking at the specific cost of a cached resource, also takes the re-
source’s activeness into account. A resource’s activeness reflects the resource’s degree
of activity. This may be related, for example, to the resource’s age, recency, or access
frequency. Note that a resource’s activeness is not a fixed value but changes over time.
Hosseini combines a resource’s specific cost and its activeness in the Double Sort algo-
rithm [48]. The general effect of Double Sort is that the most active resources remain in
cache and, of the less active resources, the ones with the lowest specific cost are removed
from the cache.

Double Sort works in three phases. In the first phase the list of cached resources is
sorted according to their activeness at that time. In the second phase, a new list consist-
ing of a portion of the least active resources from the first list is created and sorted by
specific cost. Finally, in the third phase, resources, from the second list with the lowest
specific cost are chosen for eviction. Different variations of the Double Sort algorithm are
possible. For example, varying the model used to calculate replacement cost influences
a resource’s specific cost and therefore influences a resource’s chances of being evicted.
Similarly, varying the factor that influences a resource’s activeness (e.g., whether active-
ness measures age or frequency of access) will also change a resource’s position in the
activeness list and thus its chances of being evicted.

With the Greedy Dual-Size algorithm [20] Cao proposes an algorithm that takes a
resource’s specific cost and its frequency of access into account. In this algorithm each
cached resource is associated with a value, H, which is originally equal to the resource’s
specific cost. On a cache miss resources with the lowest H values (Hmin) are chosen for
eviction. After resources have been evicted, the H values of the remaining resources are
decreased by Hmin. On a cache hit, the requested resource’s H value is reset to its specific
cost. As in the case of Double Sort, the effect of the Greedy Dual-Size algorithm can be
altered by using different cost models to determine a resource’s specific cost.

136 CHAPTER 4. GLOBEDOC ARCHITECTURE DETAILS

GlobeDoc Cache Replacement Policies

There are a number of similarities between the caching of GlobeDoc object bindings and
the caching of Web resources. In both cases the cached resources have a nonuniform
size and nonuniform replacement costs. Similarly in both cases policies and algorithms
may optimize for resource or object hit rate, byte hit rate, access latency and network
traffic. Likewise in both cases the access patterns (e.g., patterns of activeness, popularity
of particular resources or objects, source (location) of requests, etc.) are very similar.

Despite the similarities, there are some major differences between the caching of Web
resources and GlobeDoc object bindings. Unlike a Web resource’s size, a GlobeDoc
object LR’s size changes over time. This is because an LR, unlike a traditional Web
resource, is not read-only. This means that the LR’s state can be updated while the LR
is cached, but not actively used. Note that, because a cached LR’s size can change when
it is updated, cache entries may need to be removed on an update as well as on a cache
miss. Unlike a Web resource, a GlobeDoc LR can also cause extra incoming traffic, even
when it is not being actively used (e.g., an actively replicated LR may receive and process
update requests from its peers). Likewise, a GlobeDoc LR can generate extra outgoing
network traffic (e.g., an LR might regularly poll for updates or forward updates to other
peers it knows about). Unlike Web resources which are merely data, a cached GlobeDoc
LR can use up CPU cycles while processing incoming messages. Another big difference
is that while in Web caching it is up to the (proxy) server or client to determine whether
a resource is stored on disk or in memory, in GlobeDoc this is up to the GlobeDoc object
itself. Also, in GlobeDoc, whole documents (GlobeDoc objects) are cached, whereas
in the Web resources are cached individually. Finally, while a Web proxy (or client)
generally determines and implements a global replication and coherence policy for its
cached resources, in GlobeDoc this is something that is determined individually by each
GlobeDoc object.

Also important to note is that GlobeDoc objects have a nontrivial binding cost asso-
ciated to them. This is a uniform cost based on the time it takes to contact the naming
and location services and retrieve, load and instantiate an LR implementation. This does
not include the time it takes for the LR to contact any of its peers or to transfer state to or
from those peers. The binding cost can also be expressed in terms of the network traffic
generated during binding.

Given these differences, it is clear that when developing cache replacement policies
for GlobeDoc object bindings we must look at more than just hit rates, miss rates, latency
and network traffic. It is also important to consider the extra network traffic that a cached
GlobeDoc LR can generate, the extra CPU cycles that an LR may use up and the main
memory and secondary storage that the LR will require.

Note, also, that there is a large degree of interaction between the replication policies,
access patterns, and update patterns. This means that subtly different combinations can
often cause very different results. For example, using active replication in a GlobeDoc
object that receives few updates will result in an LR whose size is relatively stable. Like-
wise, such an LR will use up little processing power and cause little network traffic (either
incoming or outgoing). On the other hand, active replication in a GlobeDoc object that is

4.4. SHARED LOCAL REPLICAS 137

updated regularly will result in an LR whose size changes regularly. Such an LR will also
use up more processing power and will receive a regular stream of incoming messages,
increasing the network traffic to its host.

To apply the Web cache replacement algorithms described above (Greedy Dual and
Double Sort) to GlobeDoc object caching it is necessary to determine a cost function that
can take the new GlobeDoc specific metrics, much of which are affected by an object’s
replication policy, into account. According to the design of Globe, however, an object’s
replication policy is meant to be transparent, which means that GlobeDoc does not provide
any mechanisms to find out about an object’s policy. Fortunately, this may not be as bad
as it seems. Given that a GlobeDoc object is free to implement any replication policy
it desires, having the cache replacement strategy depend on knowledge of a limited set
of replication policies will limit how LRs replicated according to a new policy are dealt
with. Worse, such a strategy may interfere with the proper functioning of the cache by
making incorrect assumptions about the LR. Ideally the cache replacement strategy should
work independently of the object’s replication policy (in the same way that the semantics
subobject works independently of the replication policy).

There are two approaches to solving this problem. The first involves adding a cache
management interface to the control object. This interface provides methods that return
information about an LR’s size, network cost, main memory use, secondary storage use,
processing cost, latency cost, etc. It would be up to the LR (a collaboration between the
replication, communication, semantics, and control subobjects) to implement this inter-
face by recording, calculating, and providing the required information. The information
returned by these methods could be used to calculate values for the LR’s specific cost and
activeness. Although the current suggestion is specific to the problem of LR caching, the
interface can be generalized into a statistics interface, which would provide a wide variety
of information about the LR and the GlobeDoc object it is part of. Such an interface could
be used by other interested parties to monitor and manage LRs.

The second approach involves devising a cache replacement algorithm that is inde-
pendent of the effects of an object’s replication strategy. Such an algorithm would most
likely resemble one of the Web cache replacement algorithms described above, with the
replacement cost function modified to take into account the fixed costs associated with
binding to an object. Although this approach ignores many of the GlobeDoc specific (and
in particular replication-strategy specific) issues presented earlier, it is possible that such
an algorithm may nevertheless provide effective results. As Cao has shown, many algo-
rithms that depend on unstable data (such as latency data) provide worse results than those
that rely solely on stable data. Experiments must be performed to verify if this is the case
for GlobeDoc and to determine which of the two solutions is most feasible.

4.4 Shared Local Replicas

Often, when clients from the same location access the same Web document, it is preferable
to create a local shared copy of that document than to have every client keep its own copy.
This sharing of a local replica is the idea behind proxy caches in the Web In GlobeDoc

138 CHAPTER 4. GLOBEDOC ARCHITECTURE DETAILS

the effect of a proxy cache can be achieved through the sharing of LRs. A shared local
replica (SLR) is a replica (i.e., a regular LR) of a GlobeDoc object that is created to
provide a locally accessible LR for clients to bind to. Unlike a Web proxy cache, the use
of SLRs must remain transparent to the client. That is, a client need not explicitly specify
that it is going to use a shared replica. Moreover, a client will generally not know whether
it is using a shared replica or not.

This transparency is achieved through the use of a bind-through service (BTS). The
essence of the BTS is that it performs the first phase of binding (mapping an object’s
name to an object handle, and mapping an object handle to a set of contact addresses) on
behalf of the client, while possibly contacting an existing LR or creating a new LR as a
side-effect. From the outside, it seems like the client simply passes the BTS an object
name or object handle and the BTS returns a contact address. On the inside, however, the
BTS determines whether an SLR is available to be used, or if one should be created. As a
consequence, whether the returned contact address is for an existing SLR, a newly created
SLR, or a remote replica, is transparent to the client.

When binding using a BTS, a client transparently forwards its bind request to the BTS
(step 1 in Figure 4.21). Note that the request may include extra information required to
choose an appropriate contact address (e.g., required consistency guarantees). The BTS
first checks whether a local object server is already bound to the object. If so, the BTS
returns a contact address for the LR at that object server (step 5) and the client continues
with the binding process.

Bind−Through Service

Object Server

Client

GIDS

5

1

2

3

4

Figure 4.21: Creating a shared local replica.

If no appropriate, locally bound LR is found, however, the BTS attempts to create a
new SLR. It first tries to find an appropriate local object server through GIDS (step 2). If
a server is found, a replica is created on that server (step 3). This will cause the server to
load an LR in its address space and connect to the rest of the object. After completing the
binding, the object server returns a contact address for the new LR (step 4). This contact
address is then used by the client to complete the binding process (step 5).

4.4. SHARED LOCAL REPLICAS 139

If no appropriate local object server is found, the BTS simply forwards the bind re-
quest to the Globe location service. The contact address it receives is returned to the
client, allowing the client to proceed with binding as usual. After receiving one or more
contact addresses from the BTS, the client proceeds as normal with the next phase of the
binding process.

140 CHAPTER 4. GLOBEDOC ARCHITECTURE DETAILS

Chapter 5

Globe Infrastructure Directory
Service

As we have seen in the previous chapters, the GlobeDoc architecture relies on many ser-
vices. Examples include LR hosting services, the location service, the naming service, etc.
These services are generally implemented by one or more servers, either as a single inde-
pendent server or as a distributed service where multiple servers work together to provide
the service. LR hosting, for example, is generally done by a single object server. The lo-
cation service, on the other hand, is implemented by many cooperating widely distributed
location service nodes.

For clients it is usually irrelevant whether a service is implemented by a single server
or by multiple servers. A client accesses a service through a service access point, that
is, a server (usually a local server) that provides access to the service. Depending on the
service and its implementation, service access point functionality may be implemented by
multiple servers or by a single, dedicated, access point server. In the location service, for
example, all leaf node servers provide access point functionality. Clients connect to their
closest leaf node when they need to access the location service.

Services generally provide access to resources. These resources may, for example,
be primary or secondary storage, a high-bandwidth network connection, large amounts of
processing power, etc. Services may also perform tasks on behalf of clients. The naming
service, for example, resolves object names to object handles and the implementation
repository resolves implementation handles to implementation archives.

Services can be identified by a list of properties that describe the resources they pro-
vide and tasks that they perform. Besides practical information such as the addresses of
a service’s access points and access restrictions, the properties also include information
such as the resources made available by the service and limitations placed on the availabil-
ity of those resources. The list may also include other information about services offered
such as performance guarantees and service costs.

141

142 CHAPTER 5. GLOBE INFRASTRUCTURE DIRECTORY SERVICE

In GlobeDoc, (potential) clients1 often require access to this kind of service informa-
tion. For example, when creating a GlobeDoc object, a user must know the address of a
suitable object server where the object’s initial LR can be hosted. Likewise, when creat-
ing a new replica of a GlobeDoc object, a user must also be able to find the address of a
suitable object server to host the replica LR. Often this requires not only finding an object
server that offers support for the right combination of platform and OS, but also one that
is close to where client requests (for the object) originate. Likewise, in order to perform
proper maintenance, GlobeDoc site maintainers (i.e., those responsible for maintaining a
local group of object servers, GlobeDoc access points (GAPs), location service nodes, and
naming service nodes) also require information about the servers running in their domain.
Besides simply accessing this information they may also need to modify it if the status of
servers or services changes.

In GlobeDoc we call the process of maintaining and accessing such service informa-
tion resource management. The Globe infrastructure directory service (GIDS) is a
service that allows resource management. It is a service that keeps track of all available
GlobeDoc services and their properties. Clients can access this service and request infor-
mation about any given service, or they can discover services given a set of search criteria.
Services also access GIDS to register themselves and to keep data about themselves up-
to-date.

This chapter describes the design and implementation of GIDS. The next section
presents the GIDS architecture model and is followed by a section containing a practical
overview of an implementation of GIDS using DNS and LDAP. The chapter closes with
a review of related technologies and an evaluation of the GIDS system (in comparison to
these other technologies).

5.1 GIDS Architecture

GIDS makes a distinction between local resource management and global resource man-
agement. Local resource management deals with managing resources and services
within a base region. A base region represents a small geographical or network-
topological area containing a group of services (object servers, location service nodes,
GAPs, etc.). It is the smallest unit of proximity known to GIDS. In other words, if two
processes are in the same base region, GIDS will consider them as being at the same
location.

Global resource management, on the other hand, deals with grouping the informa-
tion from base regions into larger units (called regions and making that information avail-
able to clients. In particular, global resource management deals with globally tracking
resources and services, and providing efficient search facilities for clients, regardless of a
client’s location.

1Note that in this context a client is not a process requesting a GlobeDoc object’s elements but a user or
process that is in charge of managing (the replicas of) a GlobeDoc object

5.1. GIDS ARCHITECTURE 143

5.1.1 Local resource management

Base Regions and the Region Service Directory

Every base region has a region service directory (RSD). An RSD is the central access
point for a base region, storing, managing, and making available data about all the ser-
vices in that region. A service that wishes to make its information available through an
RSD must register itself with that RSD by providing details of its resources, services, and
additional properties. A service may register at an RSD only if it was previously autho-
rized by the base region’s administrator. Clients that make use of GIDS are also assumed
to belong to a base region. Unlike services, however, clients do not register themselves at
an RSD.

In the RSD, services are identified by a set of property attributes that describe their
resources and services. General properties include information such as the service name,
service type, address, communication protocol, the platform it runs on, etc. Services also
have service-specific properties. For example, an object server has properties that describe
whether it offers persistence, how much disk space it makes available to each object, how
much memory is available, the available local network bandwidth, authentication and
authorization information, etc.

The RSD stores a single record per service. Each such record contains all of a service’s
properties and a unique service identifier. This service identifier is set when a record is
created and can be used to retrieve the contents of that particular record. The RSD is
also searchable. By specifying a list of attribute-value pairs as search criteria a client can
search for and retrieve all service records that match that criteria.

Table 5.1 lists the operations that an RSD provides for accessing and modifying ser-
vice information.

The add service, delete service, and modify operations allow management of an RSD and
the service information that it stores. The search operation initiates a search in the RSD
for services with the given properties. In contrast, the remote search operation is used to
search for servers outside the RSD (i.e., in other RSDs). Both return a set of service
entries that match the criteria. We return to these operations later.

An RSD makes its operation available to clients through an RSD-specific network
protocol. This means that an RSD can be accessed both from within and from outside its
base region, that is, it can be queried by clients from its own base region, as well as by
clients from other base regions.

Naming and locating base regions

Base regions are grouped into nonoverlapping regions, which, in turn, are grouped into
larger (nonoverlapping) regions. This organization leads to a region hierarchy, simi-
lar to the organization of domains in DNS. An important difference with DNS domains,
however, is that, in GIDS, regions always represent a notion of proximity. For exam-
ple, the base regions within a city can be grouped into a separate region representing that
city, which, in turn, can be part of a region representing a province, which itself may be
grouped into a country region, etc.

144 CHAPTER 5. GLOBE INFRASTRUCTURE DIRECTORY SERVICE

local operations
method add service Adds a service registration entry
in serviceID Identifier of the service to be added
in properties Properties of the service
method delete service Removes a service registration entry
in serviceID Identifier of the service to be removed
method modify Modifies a service registration entry
in serviceID Identifier of the service to be modified
in properties New properties of the service
method search Finds a service with the given properties
in properties Properties to search for
returns A list of identifiers for services matching the given proper-

ties

remote operation
method remote search Finds a service with the given properties
in properties Properties to search for
in location An extra location property
returns A list of identifiers for services matching the given proper-

ties

Table 5.1: RSD operations

In this sense, each (base) region has an associated location, which is represented by
a name that reflects the hierarchical organization of regions. For example, if the campus
of the Vrije Universiteit forms a base region, a possible name for this region could be
vucampus.amsterdam.nl.eu, with each component name representing a region.

In GIDS, a base region is the smallest grain of location representation, meaning that
every service inside a base region has the same location as the base region itself. A full
location name always refers to a single base region. A partial name (which is always a
suffix of a full name), on the other hand, can refer only to a group of (base) regions, and
never to a base region.

It is not necessary that the region hierarchy forms a balanced tree. As such, some
branches in the hierarchy may be deep and broad, while others may be shallow and nar-
row. For example, in a region hierarchy that reflects geographic location, branches repre-
senting areas with a high density of services will tend to be deep and broad, while those
representing areas with few services will be shallow and narrow.

Figure 5.1 shows an example of a region hierarchy and some associated full and partial
names. Note that the partial name sara.amsterdam.nl.eu refers to an organization called
SARA2 that has been registered as a region, but does not (yet) have any base regions. In
this case the set of base regions belonging to sara is empty. This feature (that a branch
of the region hierarchy does not always end in a base region) is necessary to support

2SARA is a computing and networking service provider for the universities in Amsterdam.

5.1. GIDS ARCHITECTURE 145

the extensibility and flexibility of the hierarchy. It allows the hierarchy to be built up
dynamically by adding regions and base regions as they are needed. For example, the
sara.amsterdam.nl.eu region may acquire base regions (or even regular regions) in the
future, in which case its part of the hierarchy may be extended.

Note, also, that in this example the naming scheme changes from a proximity based
scheme to a logical scheme. For example, the names dunet1, vucs, and bionet all refer
to logical networks as opposed to physical locations. This combining of naming schemes
will be explained later in Section 5.2.2.

region 5

base region 1 base region 2 base region 3

region 4

region 5: ny.usa.na
region 4: sara.amsterdam.nl.eu
base region 3: globe.caida.sandiego.cs.usa.na

region names: base region 1: globe.vucs.vucampus.amsterdam.nl.eu
base region 2: experiment.vucs.vucampus.amsterdam.nl.eu

region region
amsterdam

region
tudelft

region
vucampus

region
sara

region
ca

region
ny

region
san francisco

region

delft

root
region

region
na

region
eu

region
africa

region
fr

region
nl

region
usa

region
ca

san diego

region

vucs
region

bionet

region
caidadunet1

region

globesite
base regionbase region

globeglobe

base region

experiment

base region

Figure 5.1: Base regions and a simple hierarchy.

Local management in a base region

Like GlobeDoc services, every client also belongs to a base region and has an associated
location. Unlike services, however, clients do not register with an RSD; they simply
contact their local RSD to determine their location. Besides GlobeDoc service details, an
RSD also contains a wide variety of other information about its base region. For example,

146 CHAPTER 5. GLOBE INFRASTRUCTURE DIRECTORY SERVICE

an RSD can also provide the address of a local or nearby DNS server, or otherwise that
of a proxy to such a server. Similarly, information on Web (proxy) servers, local file
servers, and so on, can be readily provided by an RSD. In this sense, an RSD is similar
to domain controllers as used in the Windows 2000 Active Directory [62]. There are,
however, important differences with Active Directory that are presented later.

Security in a base region

There are a number of tasks (such as adding, updating and deleting service records), which
can be performed with respect to an RSD, that must be protected against abuse. The RSD’s
security model deals with authenticating clients and confirming that they are authorized to
add, remove, or modify service records. Authentication can be performed automatically
by the RSD. However, granting authorization is arranged out-of-band (e.g., as part of a
service contract). Note that the authorization needed for modifying an RSD is separate
from the authorization that a client might need to actually use a service in the base region
(which is determined by the service itself). There are also, currently, no mechanisms for
verifying the validity of the data returned by an RSD.

5.1.2 Global resource management

While the previous section described management of servers and resources on a local scale
(i.e., within a single base region), this section deals with the management of services and
resources on a global level involving multiple regions.

Searching for servers

One of the main functions of GIDS is that it allows users to search for services with given
properties. In doing so, it distinguishes between two kinds of searches: local searches
and remote searches. A local search, initiated at a specific base region, is limited to the
services in that base region, while a remote search allows a GIDS client to search for
services in base regions other than the one where the search was initiated.

As described above, a local search is invoked through an RSD’s search operation. A
remote search is invoked through a similar remote search operation. During a local search,
the RSD searches through its internal database of service records trying to find records
that match the given search criteria. The client may limit the number of results it wants
returned, ranging from one, to all the possible matches.

Remote searching is somewhat more complicated, and proceeds in two steps. The first
step involves resolving the given location name into a set of RSD addresses that represent
all the base regions referred to by that name. The second step involves performing a local
search on each of the RSDs found above for services that match the given search criteria.
A remote search returns a set of service records for services within the specified location
that fulfill all the specific client requirements.

Because locations are represented as names, the first step, location-to-name resolution,
is done using a name service. This name service resolves a location name to the set

5.1. GIDS ARCHITECTURE 147

of base regions (actually, the addresses of the RSDs belonging to those base regions)
that fall under that location. As an example, Figure 5.1 shows a number of base regions
and a partial location hierarchy. Resolving the location name globe.vucs.vucampus.
amsterdam.nl.eu in this hierarchy would result in the RSD of base region globe being
returned. Resolving the name nl.eu, on the other hand, would result in the RSDs of base
regions globe, experiment and globesite being returned because these three base regions
lie in region nl. Finally, resolving the location sanfrancisco.ca.usa.na would result in
an empty set being returned because there are no base regions in region sanfrancisco.

Such a name service can be built by associating a region name server (RNS) with
every region. An RNS stores the following information about its associated region. For
each subregion, it maintains a mapping of that subregion’s location name to the address
of the server representing that subregion. Such a server is an RNS if the subregion is not
a base region, and otherwise an RSD. To resolve a location name, name resolution starts
at the root RNS, and moves down the hierarchy following the components of the location
name, completely analogous to DNS name resolution. A partial name is always resolved
to an RNS, while a full name is resolved to an RSD.

When name resolution ends in an RNS, the naming subtree rooted at that RNS is tra-
versed by resolving each pathname to a leaf node. This traversal results in a set of RSDs,
which is subsequently returned to the client that initiated the original search operation.
When name resolution ends in an RSD, that RSD is returned. Attempting to resolve a
nonexisting name (i.e., one that refers to a nonexisting region) returns an error.

Once the location name is resolved to a set of RSDs, these RSDs are searched for
appropriate services using their local search operations. Clients may limit the number
of results they wish to receive from the remote search. In this case, the search stops
when that number of services is found, otherwise it continues until all RSDs have been
searched. The RSDs are searched in a random order to prevent any one RSD’s servers
from being chosen more often than others. This introduces simple load balancing and
prevents servers from being favored or overloaded because their RSD is always found
first during the location hierarchy traversal.

Scalability

Although having a root RNS through which all requests are made may pose a problem
to scalability, well known techniques (from DNS), such as caching of mappings at every
RNS, can be applied to prevent every request from going through the root. Similarly,
as in DNS, the root RNS may be replicated over multiple physical servers to prevent
overloading of any single server.

Global region management

The region hierarchy is dynamic, meaning that there is no predefined structure determin-
ing the number and locations of all (base) regions. Rather, the hierarchy is built up as
regions and base regions are added and removed. This addition and removal of regions is
controlled by a global management policy. The management policy determines which

148 CHAPTER 5. GLOBE INFRASTRUCTURE DIRECTORY SERVICE

clients are authorized to add or remove regions, and where and when such operations can
take place. For example, it determines whether it is possible to add regions at any RNS
or only at the leaves of the hierarchy, whether it is possible to remove or add whole sub-
trees at once, etc. In GIDS, the management policies can be implemented either internally
(e.g., by the RNSs themselves) or externally (e.g., as an external management service).
They can also be automated (e.g., a region can be added by performing an operation on an
existing RNS) or manual (e.g., an administrator must edit a configuration file and restart
the parent RNS for a region to be added). As explained later, the current implementation
of GIDS adopts the policy implemented in DNS.

Region Hierarchies

Although GIDS provides a design for the region hierarchy, it does not impose any par-
ticular hierarchy. The only requirements placed by GIDS on a region hierarchy is that
it reflects some notion of proximity. This may, for example, be geographic proximity,
where regions represent geographic locations. Proximity in such a hierarchy would rep-
resent proximity in the real world. Another possibility is for the hierarchy to represent
network proximity. Thus, regions that are close together in the hierarchy will also be
close together in terms of network connectivity (e.g., number of network hops). Yet an-
other region hierarchy might be based on Internet routing data, with the higher regions
representing Internet backbone connections and autonomous systems, and the lower re-
gions representing individual networks and subnetworks.

It is not clear that any single hierarchy is better than another. For example, although
a hierarchy based on geographic data provides a good measure of geographic proximity,
this does not always translate well to network proximity. It is possible that two points,
although geographically close, may be on separate networks and therefore far removed in
terms of network topology. On the other hand, it is currently difficult to build a hierarchy
representing network proximity. Unlike the world’s geographic topology, the Internet
topology is not yet well mapped and is constantly changing.

Currently GIDS supports a region hierarchy that represents a combination of geo-
graphic and network proximity. This hierarchy is described in more detail in Section 5.2.2.

Multiple Region Hierarchies

Because no single hierarchy is ideal for all situations, GIDS has been designed so that
it can support multiple region hierarchies. In this case a base region (and services reg-
istered with it) can have multiple locations - one location for each hierarchy. Figure 5.2
shows an example of some base regions that are accessible through three different hierar-
chies. One of the hierarchies is based on geographic proximity, one is based on Internet
routing information and one is based on DNS domain names. In this example base re-
gion 1 has the following location names: globeexp.WI.bl1081.VU.amsterdam.nl.eu,
globeexp.vucs.VU-NET.AS1103 and exp.globe.cs.vu.nl. Because base regions can
have multiple location names they are considered independently of the (proximity based)
region hierarchy that they are part of.

5.2. IMPLEMENTATION 149

AS1103

VU-NET

AS195

root

nl

vu

cs

globe

globeworld

org

net

edu

sdsc

globe

base region base regionbase region
1 2 3

WI

vucs

rootroot

eu

nl

amsterdam

VU

bl1081

na

usa

ca

sandiego

caida

exp.globe.cs.vu.nl

globeexp.WI.bl1081.VU.amsterdam.nl.eu
globeexp.vucs.VU-NET.AS1103

br.net.globeworld.org

globe.WI.bl1081.VU.amsterdam.nl.eu
globemain.vucs.VU-NET.AS1103

globe.caida.sandiego.cs.usa.na
globe..AS195
globebr.globe.sdsc.edu

Figure 5.2: GIDS with multiple region hierarchies.

An important requirement for supporting multiple hierarchies is that the different hi-
erarchies share the same base region granularity. That is, in each hierarchy the established
base regions must be the smallest grain of location. This means that a base region in one
hierarchy may not be a (inner) region in another hierarchy. Another requirement is that all
RSDs must have access to at least one RNS for each of the hierarchies that they are part
of. Note that not all base regions need to be part of every hierarchy.

5.2 Implementation

This section describes an implementation of GIDS based on widely available LDAP [112]
and DNS [66] technology.

5.2.1 LDAP

LDAP (the Lightweight Directory Access Protocol) is a lightweight protocol for access-
ing X.500 directory services. The protocol is based on the IP protocol stack and as a
result has become popular on the Internet. Despite being a protocol for accessing X.500
directory services, LDAP’s popularity has led to implementations of stand-alone (that is,
independent of X.500) LDAP directory servers.

150 CHAPTER 5. GLOBE INFRASTRUCTURE DIRECTORY SERVICE

The RSD, as described in the previous section, is implemented using a stand-alone
LDAP server provided by the openldap project.3 We use LDAP because it is a standard-
ized directory protocol that provides all the functionality required for the RSD. By basing
the RSD on a standard protocol, existing LDAP clients can be used to interface with our
RSDs. Similarly, many libraries for building LDAP applications exist which greatly facil-
itates the building of custom GIDS clients.

LDAP defines both a network protocol for accessing information in a directory and
a data model, which defines the form and character of that information. The data model
is based on entries which contain typed attributes and their associated values. An LDAP
schema defines the classes of available entries and the attributes contained in them.

The data model is object based, meaning that entries in the directory are instances
of classes defined in the schema. Because of the object-based nature, entries are often
referred to as directory objects. Following the object-oriented model, class definitions
are hierarchical, a class may have a parent class and attributes are inherited from parent
classes. Besides identifying an object class’s attribute names and types, a schema also
specifies whether attributes are mandatory or optional in an object class. Directory ob-
jects must always contain values for attributes that are declared mandatory in their class
definitions.

As part of the implementation we have created a schema for GIDS. This schema con-
tains class definitions for the various services (e.g., object server, location service, naming
service, etc.) that an RSD keeps track of.

While LDAP directories are usually structured as trees (which means that schemas
define both container objects and leaf objects, where container objects are used to create
a tree structure and leaf objects represent actual resources, services and other entities)
GIDS does not follow this model. In GIDS, the schema defines a flat object model, which
means that all objects stored in GIDS are leaf objects. Each object represents a service,
a resource or a configuration record. Note, however, that the object class definitions are
hierarchical. The schema makes use of super and subclasses in defining object classes.

Logically, the GIDS schema can be divided into three parts. The first part contains
general GIDS attribute type definitions. This includes, for example, definitions of at-
tribute types for an IP address, a host name, a port number, etc. The second part of the
schema contains definitions of attributes and object classes used for service registration,
for example, object server registrations, gateway registrations, etc. The third part of the
schema contains definitions of attributes and object classes for storing administrative and
configuration information. This includes information such as a base region’s location, the
address of a DNS server that can be used to resolve location names, the port number that
an object server should listen on, etc.

Figure 5.3 shows a fragment of the schema that defines attributes and object classes
used to store service registrations. The schema includes attributetype declarations and
objectclass declarations. Each declaration contains an object identifier (OID), a name,
which acts as an alias to the OID, and a brief description. The OID is a unique identifier
which is composed of an organizational part, a GIDS specific part, and a definition specific

3see http://www.openldap.org

5.2. IMPLEMENTATION 151

part. The organizational part is a globally unique OID prefix assigned to an organization
by an authorized registry such as IANA4 or ANSI5. The Globe project has been assigned
1.3.6.1.4.1.10020 as its organizational OID prefix. The GIDS part is used to identify the
OIDs used in the GIDS schemas. GIDS attribute type definitions have 2.1.2 as their GIDS
part, while GIDS object class definitions have 2.2.2 as their GIDS part. Attribute type
definitions are therefore assigned OIDs starting with 1.3.6.1.4.1.10020.2.1.2 while object
class definitions are assigned OIDs starting with 1.3.6.1.4.1.10020.2.2.2.

1 #################### General GIDS AttributeTypes #####################
2
3 attributetype (1.3.6.1.4.1.10020.2.1.2.17 NAME ’admin’ SUP mail
4 DESC ’The email address of an administrator.’)
5
6 attributetype (1.3.6.1.4.1.10020.2.1.2.3 NAME ’host’
7 DESC ’A DNS hostname or IP address’
8 EQUALITY caseIgnoreMatch
9 SUBSTR caseIgnoreSubstringsMatch
10 SYNTAX 1.3.6.1.4.1.1466.115.121.1.44) # printable string
11
12
13 ################### Base server registration entry ###################
14
15 objectclass (2.3.6.1.4.1.10020.2.2.2.1 NAME ’server’

SUP top STRUCTURAL
16 DESC ’Base class for server registration entries.’
17 MUST (tag)
18 MAY (admin $ description $ host $ port))
19
20 ################ Globe object server registration entry ##############
21
22 objectclass (1.3.6.1.4.1.10020.2.2.2.3 NAME ’GOS’

SUP server STRUCTURAL
23 DESC ’GOS registration entry’
24 MUST (host $ port)
25 MAY (objectBandwidth $ objectDiskspace $ objectMemory $
26 objectCPU $ totalBandwidth $ totalDiskspace $
27 totalMemory $ totalCPU $ load $ persistence $ os $
28 persistentContactPoints $faultTolerance $ runtime))

Figure 5.3: Fragment of the schema that defines service registration attributes and object
classes.

The schema fragment shows the definitions of some general attribute types (that is
attributes shared by multiple services), the top level server object class definition, and the
object server (GOS) object class definition.

All service registration classes descend from the server object class. The server object
class definition on line 15 declares the basic attributes that every service registration may

4Internet Assigned Numbers Authority, http://www.iana.org/
5American National Standards Institute, http://www.ansi.org/

152 CHAPTER 5. GLOBE INFRASTRUCTURE DIRECTORY SERVICE

contain. It specifies which attributes must be defined in a service registration and which
attributes are optional. From the definition we see that a service entry must contain a
tag attribute and that it may also contain admin, description, host, and port attributes. Note
that these attribute types are defined elsewhere in the schema and their definitions are not
shown here.

The attribute type definitions on lines 3 and 6 define the administrator email (admin)
type and the host address (host) attribute type respectively. The admin attribute type defini-
tion, besides specifying the OID, name, and description, also specifies that it is a subclass
of the mail attribute type (SUP mail). This means that it inherits all the characteristics of
the previously defined mail attribute type. Unlike the admin definition, the host definition
does not descend from a superclass. Thus, besides OID, name, and description fields, it
also contains information about the characteristics of this type of attribute. The defini-
tion states that values of this type must conform to a specific syntax (the SYNTAX field),
and may be compared in specific ways (the EQUALITY and SUBSTR fields). Note that the
SYNTAX field contains an OID value that refers to a syntax OID as defined in [111].

The GOS object class definition on line 22 defines an object server registration entry.
Like the other definitions, it also contains OID, name, and description fields. It also spec-
ifies that this definition is a subclass of the server object class. Furthermore it specifies the
compulsory and optional attributes for registrations of this type. Thus, starting on line 25
we see that an object server may, for example, register information about its bandwidth
as well as the amounts of secondary storage and main memory available to hosted LRs.
On line 24 we also see that it is compulsory for an object server to include its address
attributes (host and port) when registering itself.

As mentioned earlier, besides holding server registration information, GIDS may also
be used to provide configuration information to services in particular base regions. Fig-
ure 5.4 shows a fragment of the GIDS schema where the service configuration object
classes are defined. The schema defines two basic types of configuration classes: a base
region configuration class and a service configuration class. Both of these are subclasses
of the config object class defined on line 1. The base region configuration class, defined
on line 7, specifies a base region’s general characteristics. This includes information such
as the base region’s location (latitude and longitude) as well as the address of a DNS server
which can provide access to the rest of the GIDS region hierarchy (dns). Service specific
configuration information is contained is separately defined service configuration object
classes, which are subclasses of the serverConfig object class defined on line 16. An exam-
ple of a service configuration class is the GOSConfig object class defined on line 24. Like
other object class definitions this definition specifies an OID, a name, a description, and
both compulsory and optional attributes.

The GIDS schema is extensible. This means that new attributes can be added to entry
definitions without invalidating data stored in the RSD based on older schemas. This
allows new service classes and new service attributes to be defined when new services or
service properties are introduced into the GlobeDoc architecture.

Note that in an LDAP directory an object is uniquely identified by a distinguished
name (DN). A DN is usually constructed by combining the relative distinguished names
(RDNs) of the object and all of its container objects. An RDN is a name that identifies an

5.2. IMPLEMENTATION 153

1 objectclass (1.3.6.1.4.1.10020.2.2.2.8 NAME ’config’
SUP top STRUCTURAL

2 DESC ’Base class for general and server config entries.’
3 MAY (cn $ admin $ description))
4
5 ################### Base region configuration entry ##################
6
7 objectclass (1.3.6.1.4.1.10020.2.2.2.9 NAME ’baseRegionConfig’
8 SUP config STRUCTURAL
9 DESC ’Config parameters that apply to a whole base region’
10 MUST (latitude $ longitude $ leafNodeID $ treeHost $
11 treePort $ globeca)
12 MAY (gnsRoot $ dns $ clientca))
13
14 ##################### Server configuration entries ###################
15
16 objectclass (2.3.6.1.4.1.10020.2.2.2.10 NAME ’serverConfig’
17 SUP config STRUCTURAL
18 DESC ’Base class for server configuration entries.’
19 MUST (tag $ enabled)
20 MAY (host $ port $ preferredIP $ serverOptions))
21
22 ################ Globe object server configuration entry #############
23
24 objectclass (2.3.6.1.4.1.10020.2.2.2.14 NAME ’GOSConfig’
25 SUP serverConfig STRUCTURAL
26 DESC ’GOS configuration entry.’
27 MAY (lsPort $ securityFile $ lsLookupTimeout $
28 lsUpdateTimeout $ checkpointInterval)
29 MUST (cpPort $ tlsCpPort $ tlsClientAuthCpPort))

Figure 5.4: Fragment of a schema that defines service configuration attributes and object
classes.

154 CHAPTER 5. GLOBE INFRASTRUCTURE DIRECTORY SERVICE

object but does not place it in the directory tree hierarchy. It is constructed out of one or
more of an object’s attributes. An RDN does not have to be unique, however, a DN must
always be unique in a directory. Because GIDS does not model its directory as a tree of
containers and leaves, a GIDS object’s DN is equivalent to its RDN. In GIDS, an object’s
DN is constructed out of the objectClass attribute, a site-specific tag attribute and the RDN
of a ficticious GIDS LDAP container object. For example, an object server might have the
following DN: objectClass=GOS server top, tag=my site, dc=gids. Note that the tag attribute is
used to distinguish multiple instances of a service running in the same base region. Note
also, that, due to the architecture of GIDS, it is not necessary for the DNs of GIDS records
in different base regions to be unique. A DN only needs to be unique within a single base
region.

The local RSD operations, as presented in Section 5.1, map directly onto equivalent
LDAP operations. Thus, add server maps onto the LDAP Add operation and delete server

maps onto LDAP’s Delete operation. Similarly, modify maps onto Modify and search maps
onto Search. Unfortunately, however, there is no direct mapping for the RSD’s remote
operation remote search. To solve this problem we overload the LDAP Search operation
and map both the local search and remote remote search operations onto it. This means
that the RSD interface, as implemented, does not strictly follow the syntax of the interface
as presented in Section 5.1. We felt that this is acceptable given the benefits that using the
LDAP protocol brings.

The LDAP Search operation uses a search filter, which defines the conditions that
must be fulfilled for the search to match a given entry. The filter specifies attributes,
attribute values, and match criteria for the search. Composite filters can be created by
combining other filters using and, or, and not operations. LDAP also defines a string
format for a human-readable filter representation [49]. This representation uses a prefix
notation for the three logic operations (and, or, and not), and an infix notation for the
attribute/value matching criteria. Figure 5.5 shows an example string representation of a
filter where the persistence attribute’s value must be true and the objectMemory attribute’s
value must be greater or equal to 32.

(&(persistence=true)(objectMemory>=32))

Figure 5.5: Example of an LDAP search filter

In order to distinguish between a local and remote search operation we require that
the filter for the remote operation always contains a location attribute. The value to match
for this attribute corresponds to the location parameter from the remote search operation as
specified in Section 5.1. Figure 5.6 shows an example of the search filter for a local and a
remote search. The only difference between the two is the presence of a location attribute
in the remote search filter.

Because both the local and remote search operations are represented as regular LDAP
Search operations, an RSD must distinguish between the two before actually processing
search requests. This means that, upon receiving a search request, the RSD must first scan
the search filter to see if a location attribute is present. If it is, then the RSD must perform

5.2. IMPLEMENTATION 155

local:
(&(persistence=true)(objectMemory>=32))

remote:
(&(persistence=true)(objectMemory>=32)(location=amsterdam.nl.eu))

Figure 5.6: Examples of a local and remote LDAP search filter

a remote search, otherwise it can continue with a local search. Because this scanning
functionality is not a normal part of LDAP it is necessary to extend the functionality of
the LDAP server used. In order to extend the LDAP server functionality without directly
modifying the LDAP server code, the GIDS RSD has been implemented as two separate
units as shown in Figure 5.7. The LDAP back end is an unmodified LDAP server such
as the openldap server. It is responsible for storing all of the RSD’s directory data. The
preprocessor frontend, on the other hand, is a custom GIDS server that is responsible
for scanning LDAP requests and filtering out and performing remote searches.

The preprocessor implements the LDAP interface and protocol and receives all of an
RSD’s LDAP requests. It scans all incoming messages and separates search requests from
other requests. All nonsearch requests are forwarded on to the LDAP back end where they
are processed. Results of these requests are piped through the preprocessor back to the
RSD client. For search request messages, the search filter is extracted and examined to
see if it contains a location attribute. If not, then it is assumed to be a local search and is
passed on to the LDAP backend like all other requests. If, however, the filter does contain
a location attribute, then it is treated as a remote search request.

Remote search requests are handled directly by the preprocessor. The preprocessor
starts by resolving the location search attribute to a list of remote RSDs. It then sends each
of the RSDs in this list an LDAP search query. The search query contains a search filter
that is the same as the original filter except without the location search attribute. Results
from these remote searches are grouped together and returned as a single LDAP reply to
the RSD’s client.

5.2.2 DNS

The implementation of the region hierarchy is based on DNS. In this implementation
RNSs are implemented as standard DNS name servers, and are arranged in a hierarchy
similar to that used in DNS. While domain names in DNS are similar to region names
in GIDS, it is important to note that DNS domains do not always represent a notion of
proximity. This means that it is not sufficient to simply map the region hierarchy onto the
existing DNS domain hierarchy. For example, addresses in the .com domain represent
administrative domains, rather than domains reflecting geographic or network topological
proximity.

Currently, GIDS supports a region hierarchy that is completely separate from the
DNS domain name hierarchy and represents a combination of geographic and network
proximity. At the top, the hierarchy represents geographic proximity. The root node

156 CHAPTER 5. GLOBE INFRASTRUCTURE DIRECTORY SERVICE

search

remote search

local search

interface
RSD

processor
Pre- LDAP Server

RSD

Figure 5.7: RSD with pre-processor and LDAP server.

represents the world, with the next level representing the continents, followed by coun-
tries and then (possibly) provinces or states and cities. At the city level the hierarchy
changes into an organisational and network topological hierarchy. Figure 5.1 shows a
part of this hierarchy. In this figure base region 1 is represented by the location name
globe.vucs.vucampus.amsterdam.nl.eu. The topmost three elements represent ge-
ographic location (Amsterdam in the Netherlands in Europe), while the next two ele-
ments represent network topological location (the Vrije Universiteit campus network and
the Computer Science department’s LAN). Finally the last element represents the Globe
group’s base region. Note that the root region is not explicitly contained in the name.
When explicitly referred to, this region is called . or root.

This hierarchy is independent of the existing DNS domain name hierarchy. Although
this means that GIDS cannot reuse any of the existing DNS infrastructure, keeping the
two name spaces separate does have advantages. First, when setting up the GIDS region
hierarchy, it is not necessary to modify any existing DNS domain name servers. This
is important from a practical point-of-view because many name server administrators are
busy enough administering the DNS domain name space that administering a second name
space will not be a high priority for them. Second, the current DNS domain name space
does not represent proximity in the nongeographical top-level domains (e.g., .com, .org,
etc.). Likewise some top-level country domains have been appropriated for commercial
purposes thereby losing their geographic significance (e.g., .to, .tv, etc.). This makes it
difficult to integrate the two name spaces. A third advantage is that separating the two
unrelated name spaces prevents name clashes. Finally, while GlobeDoc and GIDS are
not in widespread use, the Globe group can keep the management of the GIDS region
hierarchy in its own hands. This facilitates expansion of the current hierarchy and allows
experimentation with alternative hierarchies.

A major disadvantage of separating the GIDS and DNS domain name spaces, how-
ever, is that in order to resolve a GIDS region name, it is necessary to have access to

5.2. IMPLEMENTATION 157

a GIDS-specific DNS resolver. Until GIDS becomes widely used, finding such a re-
solver will not be trivial (e.g., an address will have to be retrieved from a central site).
To overcome this problem the GIDS hierarchy can be integrated into the DNS domain
name space (without merging the two name spaces). This is done by rooting the GIDS
region hierarchy at an existing DNS domain name, for example, gids.globeworld.org.
GIDS region names can then be converted into DNS domain names by appending this
domain name. For example, globe.vucs.vucampus.amsterdam.nl.eu would become
globe.vucs.vucampus.amsterdam.nl.eu.gids.globeworld.org. This new name can be
resolved by any DNS domain name resolver.

The actual GIDS DNS-based region hierarchy is implemented as follows. The DNS
servers at the leaves of the hierarchy contain mappings from base region names to cor-
responding RSD addresses. These mappings are stored in DNS SRV records. An SRV
record [42] is a DNS service record and is used to specify the location of named net-
work services. This enhances DNS by identifying the specific services provided at a
particular domain name, allowing different services to share a logical domain name but
be hosted on different physical servers. A particular service is identified by prepend-
ing a service and protocol name to a domain name. Thus, an RSD server at the loca-
tion globe.vucs.vucampus.amsterdam.nl.eu would be identified as gids.tcp.globe.
vucs.vucampus.amsterdam.nl.eu, where gids identifies the GIDS service and tcp the
TCP/IP protocol. Storing RSD mappings in SRV records allows GIDS to be implemented
alongside other DNS based services without interfering with each other. A GIDS SRV
record contains the hostname (or IP address) of an RSD server and the port that it listens
to.

When an RSD performs a remote search, it acts as a DNS resolver and looks up
the given location name. It first tries to look up the location name as though the name
represented a base region, by prepending gids.tcp to it. If this works, the RSD receives
the remote RSD’s address and can contact it directly to perform a local search on it. If
it fails, however, the RSD performs a zone transfer on the domain server represented by
the location name thus acquiring a list of domain names managed by that name server.
The RSD then repeats the above process on each these domain names until it finds all the
underlying base regions and their corresponding RSD addresses.

5.2.3 Security

LDAP provides mechanisms that secure access to the directory information stored in
LDAP directory services. Although there has not been any standardization on an ac-
tual access control model for LDAP (i.e., different implementations implement different
models), LDAP does provide standardized authentication mechanisms. Authentication
mechanisms supported by LDAP include anonymous (i.e., nonauthenticated) access, sim-
ple authentication, simple authentication via SSL/TLS, and SASL-based authentication.
An LDAP server providing anonymous access allows everyone to access the LDAP direc-
tory. Simple authentication allows clients to authenticate themselves to an LDAP server
by sending a cleartext password. This form of authentication is not very secure because
the password is sent unencrypted over a network connection. Simple authentication via

158 CHAPTER 5. GLOBE INFRASTRUCTURE DIRECTORY SERVICE

SSL/TLS combines the simple password approach with an encrypted connection. Finally
SASL (Simple Authentication and Security Level) based authentication [67] provides an
extensible security model that allows an authentication method and optional encryption to
be specified for protocol interaction.

Currently, RSDs provide anonymous read access and simple authentication for write
access. This allows anyone to search through an RSD’s directory, but only those clients
that know an RSD’s password to add or modify entries. Generally all processes that need
to register themselves in their base region will be configured with their RSD’s password.

The region hierarchy, being based on DNS, inherits DNS’ security model. This im-
plies that only administrators of GIDS DNS region servers can add, remove or modify
regions and their (SRV) entries. Thus, for example, in order to add a base region to GIDS
it is necessary to contact the administrator of the parent region’s DNS server and request
the addition of an SRV record for the new base region. There are currently no automated
tools for inserting and modifying region and base region entries.

5.3 Related work

Different approaches have been proposed and implemented to keep track of distributed
resources. One of the simplest approaches is manually distributing files containing re-
source information to interested parties. As resource information changes, new copies of
the files must be redistributed to those parties. This approach works well for systems were
few copies must be made and resource information rarely changes. However, when the
number of interested parties increases and becomes more dispersed, or the resource in-
formation becomes more dynamic, such a manual approach becomes infeasible. Systems
such as NIS [99] attempt to overcome this problem by automatically distributing these
files, however, their scalability is generally limited to local networks. DNS provides a
highly scalable service for mapping domain names to Internet addresses, however, it is not
designed to contain general directory information nor to provide the flexibility required
for a general resource directory (i.e. it does not support attribute-based naming [19]).

X.500 [89] is a standard that defines a wide-area, extensible directory service. Al-
though X.500 provides a suitable directory service model, it is complex and requires the
ISO protocol stack. LDAP (the Lightweight Directory Access Protocol) is a lightweight
version of the X.500 directory service. It does not require the ISO protocol stack, but
defines a protocol based on the IP protocol suite. Data encoding is also simplified and
a standard API for directory access is defined. Because it can be used over IP, LDAP is
becoming the directory service of choice for the World Wide Web. LDAP provides the
capability to create distributed hierarchies of the directory data, however, this capability
does not scale to the extent needed for GIDS. The reason for this is that LDAP places a
directory server at every node in a hierarchy, which makes it a more heavyweight solution
than our approach of using DNS for finding location-bound directory servers. GIDS does
not benefit from the extra directory servers in the hierarchy because it does not store any
information about the hierarchy. As such, the extra servers provide unnecessary overhead.

5.3. RELATED WORK 159

Because of its nature as a directory service and its implementation using LDAP, GIDS
bears a strong resemblance to both Microsoft’s Active Directory [62] and the Globus
project’s Metacomputing Directory Service (MDS) [37]. It is important to stress that
although all three (GIDS, Active Directory, MDS) are based on the same technologies,
and therefore have many resemblances, each is tailored to best suit its own particular
environment, and none of them renders the others obsolete.

Active Directory, in addition to being based on LDAP, also makes use of DNS to or-
ganize its directory servers into larger groups or domains. The main difference between
GIDS and Active Directory is between the role of domains in Active Directory and base
regions in GIDS. In Active Directory organizations define hierarchical domains where
each node in the hierarchy is represented by an LDAP directory server. Given an oper-
ation on a domain, DNS is used to find the address of the directory server on which the
operation is to be performed. Whereas in Active Directory directory servers can represent
internal nodes of the hierarchy, in GIDS the directory servers are limited to the leaves of
the hierarchy. The reason for this difference is that, being primarily a system for storing
administrative information, Active Directory stores information about the domains and
subdomains themselves, as well as information about the servers in those domains. In
GIDS, however, we are interested only in storing information about actual servers and
services and these are present only in the leaves. Thus, in Active Directory the domain
hierarchy is part of the directory structure, while in GIDS the location hierarchy is sim-
ply an efficient mechanism for finding directory servers. Active Directory also provides
a domain-wide index called the Global Catalog, which provides a quick way to find in-
formation in a domain. This index is a centralized summary of the information found in
the various directory servers in a domain. Such a centralized index would not be feasible
in GIDS because GIDS’s location hierarchy is meant to cover a much larger (both logical
and physical) area and is therefore meant to contain a greater number of directory servers.

Unlike Active Directory, which is primarily an administrative system, Globus MDS
is similar to GIDS in that both are resource directories; they provide information about
available resources in distributed systems. MDS is a resource directory service for meta-
computing environments. As such, one of its properties is that the data maintained by it
are highly dynamic, which leads to the requirement that data are made available in a timely
fashion. Similarly, the data returned by the system may come from multiple sources and
might even be generated on the fly (as opposed to simply being stored in a database on
the LDAP server). Because GIDS is used in an environment where the server data are less
dynamic and timeliness is a less important issue, we do not share these requirements with
MDS. Similarly, the data stored in MDS are of a much finer grain than that needed for
GIDS. MDS also relies on the distribution capabilities of the LDAP protocol to create dis-
tributed hierarchies of the resource data. As mentioned above, we feel that the distribution
provided by LDAP does not scale to the extent needed by GIDS.

Another system that is similar to GIDS is Jini [113], an environment that allows Java
programs to provide and use remote services. The Jini infrastructure provides mecha-
nisms for devices, services, and users to join a network, detach from a network, and find
each other in that network without the need for any manual administration. A main com-
ponent of this infrastructure is the lookup service. This is a service that, like the RSD in

160 CHAPTER 5. GLOBE INFRASTRUCTURE DIRECTORY SERVICE

GIDS, stores and publishes information about the services available on a network. Unlike
the RSD, the lookup server in Jini is not based on LDAP, but on associative memory tech-
nology similar to JavaSpaces [39]. Although an associative memory approach is better
suited to distribution (for example, through the use of hashing [92]), Jini is targeted for
smaller-scale networks (at the workgroup level) and as such, wide-area scalability is not
a goal in the Jini architecture. Jini, being an extension of the Java architecture, is also
heavily dependent on Java and Java Remote Method Invocation (RMI).

5.4 Evaluation

GIDS is meant to be used by clients looking to find servers that can host their Globe-
Doc object replicas. Because these clients generally know where to place their replicas,
location plays an important role in the search process. As such, GIDS is designed as
a location-aware resource management system. In contrast, most (general-purpose) re-
source management systems, such as MDS, are location unaware. That is, given char-
acteristics of a service, they attempt to find any matching services, regardless of their
location. In fact, such systems are often specifically used to find the locations of desired
services. GIDS is not a general-purpose resource management system.

In practice this means that GIDS works well when searching for services whose (ap-
proximate) location is known. It does not, however, work well when performing global
searches for services whose location is not known. Such searches require a search of the
whole region (DNS) hierarchy, which is a highly inefficient operation. Note that attribute-
based searches in large areas are inherently expensive.

GIDS is designed as a system for managing both global and local resources. Using
GIDS for local resource management is equivalent to using it for global resource manage-
ment, except that the location involved is implicit.

In the GlobeDoc environment, GIDS is also used by services as a means for finding
configuration information. This makes the job of managing a local GlobeDoc environ-
ment easier as there are considerably less configuration files to be maintained. However,
using GIDS in this way, we found that the limitation of storing data only in base regions
prevented us from easily sharing information between base regions. For example, cur-
rently, when object servers in multiple base regions share an external service, copies of
that service’s address details must be stored separately in the RSDs of each of these base
regions. When this information changes, modifications must be made to each RSD indi-
vidually. Ideally this information would be stored at a higher level in the region hierarchy,
where it could be shared by multiple base regions. Storing information in the hierarchy
in this way resembles the approach taken in directory services (such as Active Directory)
used for administration.

One thing that GIDS lacks is an RSD discovery protocol. Such a protocol would allow
any GIDS-enabled client to find its nearest RSD and in doing so automatically determine
its base region. RSD discovery would allow local services to startup, find a local RSD,
and fully configure themselves without any interference from an administrator. Various
local-area discovery protocols [78] [43] exist that can readily be used for this purpose.

Chapter 6

Performance Evaluation

Previous chapters have described and motivated the design and implementation of Globe-
Doc. In this chapter the performance of the GlobeDoc architecture is evaluated. Recall
from Chapter 1 that the performance of Web servers is generally affected by two types of
scalability problems: problems due to the geographic distribution of clients and problems
due to the number of client requests received. It was argued that an effective solution to
both of these problems is to localize traffic by replicating Web documents. In Chapter 2 it
was shown, using simulation based experiments, that one-size-fits-all approaches to repli-
cation cannot provide optimal (or sometimes even good) solutions in all scenarios. As
such, the base of our claim that GlobeDoc provides a scalable architecture for the World
Wide Web lies in its support for per-document replication policies.

These experiments have been repeated using the current implementation of the Globe-
Doc infrastructure instead of simulations, and have reconfirmed the results presented in
Chapter 2. Due to the similarity (both in setup and in results) of the repeated experi-
ments and the previous simulation based experiments, they will not be further discussed
in this dissertation. Instead this chapter will focus on profiling experiments performed to
evaluate the performance of GlobeDoc’s architectural components.

Because the overall performance of any architecture relies on the performance of its
individual components, this chapter evaluates the performance of the GlobeDoc archi-
tecture’s individual components. This is done by profiling the GlobeDoc architecture to
determine the amount of work done by each component while processing requests. The
results of this profiling experiment allow us to determine the contribution made by each
component to the delay experienced by a client when requesting a Web document.

Note that this chapter does not compare the GlobeDoc architecture to existing HTTP
servers, existing caching solutions, or existing content delivery networks. GlobeDoc code
has not yet been optimized for performance, whereas software used in practice is generally
highly optimized. As such a comparison between these systems would not provide a
balanced evaluation.

Readers nevertheless interested in a direct comparison of Globe based applications
and existing technologies, are referred to the experiments described by Bakker in [10]. In

161

162 CHAPTER 6. PERFORMANCE EVALUATION

Chapter 7 of this dissertation, the author compares the performance of the Globe Distribu-
tion Network (GDN), a Globe based network for the distribution of freely redistributable
software, to that of the Apache HTTP server. In these experiments the throughput of
GDN objects serving software packages is compared to that of Apache serving similar
data. Because GlobeDoc uses the same code base as GDN, and because GlobeDoc and
GDN objects offer similar functionality, the results presented also reflect on GlobeDoc’s
performance. Note, however, that GlobeDoc, unlike GDN, makes use of extra services
such as the redirector, translator, and gateway. These services may introduce extra de-
lay into the system, meaning that the results of a comparison between GDN and Apache
cannot be directly transferred to GlobeDoc but can only serve as a guideline.

The simulation experiments presented earlier do, however, show that the GlobeDoc
approach can provide a fundamental advantage over solutions that apply a one-size-fits-
all approach to replication. Also, by providing a global view of GlobeDoc’s performance,
the profiling experiments allow existing and potential bottlenecks to be located and as
such provide clues about where to start optimizing.

The rest of this chapter presents the experiments performed to evaluate the perfor-
mance of the GlobeDoc architecture and is organized as follows. Section 6.1 introduces
the profiling experiments used to examine the performance of individual GlobeDoc com-
ponents. The experiment setup is described in Section 6.2. Section 6.3 explains how
measurements were made and Section 6.4 presents the results of the experiments. Finally,
Section 6.5 draws conclusions about the performance of the GlobeDoc architecture based
on the experiment results.

6.1 Profiling

Because the GlobeDoc architecture consists of many separate components (e.g., the redi-
rector, the translator, the gateway, etc.) there are many opportunities for performance
problems to occur. Furthermore, some of the components are more sensitive to these
problems than others. A component that is heavily used during the processing of a re-
quest will be more sensitive than one that is hardly used. The redirector, for example, is
used only the first time that a Web document is accessed. Its performance will be less
crucial to overall performance than the performance of components like the translator or
gateway, which are used each time a Web document is accessed.

The primary goal of the profiling experiments described in this chapter will be to
determine which components are most heavily used and therefore most crucial to the per-
formance of the GlobeDoc architecture. The experiment results will be summarized in a
number of functions, which can be used to predict the work done by any single component
based on the properties of requests it must process. Analysis of the experiment results will
provide an overview of how request properties (such as the size of the requested data or
the number of elements requested) affect the amount of work done by each component.
Finally, the experiments will also help to determine each component’s contribution to the
total time required to fulfill a client request.

6.1. PROFILING 163

The profiling experiments are performed using a GlobeDoc implementation based on
the designs as presented in the previous chapters. The experiments consist of a single
client performing requests for Web documents whose elements are stored in one or more
GlobeDoc objects.

In these experiments we make a clear distinction between a Web document request
and an element request. An element request is a request for a single GlobeDoc element as
represented by an embedded GlobeDoc URN. An example of such a request is expressed
by the following URL:

http://enter.globeworld.org/object1:/element1.html

A Web document request is a request for all the elements that make up a Web document.
A Web document request is represented by a list of embedded GlobeDoc URNs, such as:

http://enter.globeworld.org/object1:/element1.html
http://enter.globeworld.org/object1:/element2.gif
http://enter.globeworld.org/object1:/element3.gif

Unless stated otherwise, in the rest of this chapter request will refer to a complete Web
document request.

Note that in these experiments a Web document can span multiple GlobeDoc objects,
that is, the elements making up a Web document can be partitioned over multiple Globe-
Doc objects. In this case the list of URLs that represent the Web document will contain
URLs that reference different objects. For example, the following Web document request
contains requests for elements from GlobeDoc objects object1 and object2:

http://enter.globeworld.org/object1:/element1.html
http://enter.globeworld.org/object2:/element1.gif
http://enter.globeworld.org/object2:/element2.gif

Web documents have three identifying properties. The first, n, is the number of ele-
ments that a Web document contains. The second property, s, is the total size of the Web
document, i.e., the combined size of all the document’s elements. The third property, g, is
the Web documents granularity, i.e., the number of GlobeDoc objects needed to contain
all of the Web document’s elements.

When requesting a Web document a client sequentially requests all of that document’s
elements. There is no delay between subsequent element requests, so as soon as a reply
for the previous request is received the next request is sent out. A run of the experiment
consists of repeated requests for a single Web document. The client may insert delays
between these Web document requests. However, if such a delay is inserted the same
delay must be inserted between all Web document requests.

Unlike the models offered by other Web load generators, which attempt to simulate
realistic Web loads (e.g., SURGE [14]), our request model does not intend to be realistic
in the same sense. A property of realistic request streams is that there is much variance
between subsequent requests. Thus, for example, the delay between requests may vary,
the size of the elements requested may vary, etc. In our case, a steady stream of identical

164 CHAPTER 6. PERFORMANCE EVALUATION

requests allows the system’s reaction to particular types of requests (i.e., requests for par-
ticular types of Web documents) to be analyzed. A variable request stream does not make
it possible to analyze the effects of various request parameters on system performance in
this way.

For each Web document request made we measure the total round trip time (RTT)
for that request and the amount of work done by each component to fulfill that request.
RTT is defined as the time between the client’s sending of the first element request and
receiving the last reply for a single Web document. Work done to fulfill a request is
defined as the amount of CPU time used by a component to process that request. Both
RTT and work done are measured in seconds.

Figure 6.1 shows an overview of the experiment setup and the steps taken when re-
questing a Web document. As mentioned above, a Web document request is executed as
a sequence of separate element requests. A Web document request is initiated by sending
a request for the first element to the redirector (step 1). Upon receiving this request the
redirector finds a GAP near to the client and returns a redirect message instructing the
client to send all future requests to that GAP. In response to this redirect message, the
client sends an HTTP request for the element to the given GAP’s translator (step 2) where
the request is immediately forwarded to the associated gateway (step 3). When it receives
this request, the gateway binds to the GlobeDoc object referenced in the request. The
binding process causes a local representative (LR) to be loaded into and created in the
gateway’s address space. After binding, the gateway invokes methods on the new LR to
retrieve the requested element. These method invocations cause the LR to communicate
with a replica hosted on a nearby Globe object server (step 4a), resulting in the transfer
of the element contents from that replica to the LR. Depending on the replication policy
implemented by the GlobeDoc object, the replica may contact other replicas before send-
ing the element contents to the LR (step 4b). Once the gateway has received the complete
element, the element is returned to the translator (step 5) where it is optionally processed
before being returned to the client as an HTTP reply (step 6).

Note that the client contacts the redirector only the first time that it requests a Web
document’s element. After this first request, the client remembers its nearest GAP and
does not consult the redirector for subsequent element requests. Every time a new Web
document request is started, however, the client forgets its nearest GAP and always sends
the first element request to the redirector.

Similarly, although the gateway can cache many object bindings, in this experiment it
caches object bindings only within a single Web document request. This means that after
the first request for a GlobeDoc object’s element, subsequent requests for that object’s
elements do not cause the gateway to re-bind to the object. All cached object bindings are
flushed after a Web document request is completed.

6.2 Experiment Setup

Figure 6.2 expands on Figure 6.1 and shows all 8 components involved in this experiment:
the client, the redirector, the translator, the gateway, the naming service, the location ser-

6.2. EXPERIMENT SETUP 165

Redirector

Client

GAP

Translator Gateway GlobeDoc Object

1

2

6

3

5

4b4arequest

reply
LR Replica Master

Figure 6.1: Overview of request processing.

vice, the replica object server, and the master object server. Note that, although the loca-
tion service is treated as a single component, it is actually implemented as four separate
components: the replica leaf node (used by the gateway and the replica object server), the
master leaf node (used by the master object server), the root node, and the location service
tree node (see [12] and [110] for more details about the implementation of the location
service and the roles of these components).

The experiments were run on the DAS-2 [32] distributed supercomputer. This is a
cluster computer consisting of a large number of PC nodes (of which 11 were used for
this experiment). Each DAS-2 node is a dual 1-GHz Pentium III with 1 gigabyte of
memory. The nodes are connected together by 100Mbit/sec Fast Ethernet as well as a
Myrinet-2 network. However, only the Ethernet was used for this experiment. The nodes
run RedHat Linux version 7.2 with kernel version 2.4.19-pre10. The version of the Globe
software used is 1.0.6. To prevent GlobeDoc components from interfering with each other
and to simplify the gathering of the performance data, each component runs on a separate
node.

When a run of the experiment is started each component is assigned to a separate
DAS-2 node. Next, each component is individually started on its respective node. The
client component waits until all the other components are running before starting to send
requests. Once the client has finished sending its requests and the last request has been
processed, all running components are terminated. After all the components have ter-

166 CHAPTER 6. PERFORMANCE EVALUATION

Object
Server

Object
Server

Naming Service Location ServiceRedirector

region A1

B2
B1

A0

A1
A2

B0 C0

C1

PB
PCPA

R

region A0 region A2

region B1

region B0

region B2

region C0

region C1

region PA region PB region PC

region R

Client
Translator Gateway

replica masterBinder

GlobeDoc Object

LR

Figure 6.2: Setup of performance analysis experiment.

minated a preliminary analysis of their activity logs is made and stored on a central file
system.

When running this experiment it is assumed that each GlobeDoc object is optimally
replicated. This means that the replica to which the gateway connects is the closest replica
available. It is also assumed that this replica is close enough to the gateway and that these
two components can make use of the same location service leaf node. Furthermore, this
replica will already contain the most up-to-date copy of the object state. Thus, when an
LR makes a request for an element, that element’s contents can be served directly by the
replica without first contacting a master or other replica. A GlobeDoc object’s elements
do not change during the experiment.

Another assumption made is that the location service leaf node used by the gateway
already contains the contact address for the GlobeDoc object replica at the replica object
server. This means that the root and master location server nodes are used only to set
up the experiment, and are not used during the experiment to locate a GlobeDoc object’s
replica. Likewise, because the location service tree server is used only when a location
service node starts up, the tree server is used only to set up of the experiment and is not
used during the experiment itself.

A run of the experiment is identified by five parameters as shown in Table 6.1. In
this table, n, s, and g identify the Web document being requested, i specifies the length of
the delay between Web document requests, and r specifies the number of complete Web
document requests performed.

6.3. MEASUREMENTS 167

Parameter Description
n Number of elements in the requested Web document.
s Total size of the requested Web document (in kilobytes).
g Granularity of a the requested Web document.
i Delay between Web document requests (in seconds).
r Number of Web document requests to perform.

Table 6.1: Experiment run parameters.

6.3 Measurements

Two kinds of data are logged during a run of the experiment: the round trip time (RTT)
for each Web document request and the amount of CPU time used by each component to
process the requests. Logging the RTT is reasonably straightforward and is done by the
client. The client records the time when a Web document request is started, it records the
time when the request is completed, and then it calculates the elapsed time. Determining
the CPU time used by each component is more complicated and requires the monitoring
of a component’s activity during request handling.

There are three possible approaches to monitoring a component’s activity. The first
approach is to strategically place timers in a monitored component’s code. With this
approach, whenever a monitored part of the component’s code is executed, the timers
keep track of the time spent in that part of the code. By placing the timers in parts of the
code that are responsible for processing requests, it is possible to determine exactly how
much time each component spends processing requests. By differentiating between timers
placed in different parts of the code (e.g., parts responsible for network communication,
parts responsible for file system access, etc.), it is possible to get a detailed breakdown of
the work done while processing requests. Such a detailed breakdown is often used to spot
bottlenecks and find code that needs to be optimized. There are two drawbacks to this
approach. First, it is very time consuming (and error-prone) to insert timers into existing
code. Second, the timers are not always accurate and are susceptible to the effects of other
system activities. For example, if a process is stopped by the scheduler while in a timed
part of the code, the timers will register more work being done than was actually the case.

Execution profiling is another approach to monitoring a component’s activity. In ex-
ecution profiling, a program is run in an environment that periodically interrupts the run-
ning program to gather details of the program’s current state. These details are logged and
analyzed to determine which function was being executed at the time, what data structures
were being used, how much memory was allocated, etc. When the program is finished ex-
ecuting, the logged data are analyzed to provide an overview of the program’s execution.
Execution profiling is often used to provide a detailed analysis of the functions called
during the execution of the program as well as the frequency and duration of those calls.
Given such a detailed analysis and access to the profiled program’s source code it is possi-
ble to determine the amount of time spent in the parts of the code responsible for specific

168 CHAPTER 6. PERFORMANCE EVALUATION

behavior (such as processing requests). A major benefit of this approach compared to the
timer approach is that it is not necessary to modify the program in order to profile it.

There are, however, a number of drawbacks associated with the use of an execution
profiler. First, the data collected is generally quite fine grained. This means that analyzing
the output can be painstaking and usually requires intimate knowledge of the code being
profiled. Second, because it periodically interrupts the running program to collect data,
the profiler degrades the performance of the program being profiled. Third, because the
profiler collects data at specified intervals, time spent executing small blocks of code
that are short enough to fall between two consecutive profiling intervals may be missed.
Missing such small blocks of code may skew the results produced by the profiler.

A third approach to component activity monitoring is to monitor system behavior us-
ing data made available by the operating system. In this approach a component’s activity
is monitored by periodically logging operating statistics (such as, running time, CPU time
used, memory used, etc.) for its processes.1 Because the data is gathered at the process
level (e.g., CPU time used per process, as opposed to CPU time used per function), the
data provided is of a coarser grain than that provided by the previous two approaches.
On the other hand, when analysis of fine-grained data is not required, it is much easier to
get an overall view of a component’s activity using this method. Another benefit to this
approach is that access to, or modification of, a monitored program’s source code is not
required. This means that the effort required to monitor a component using this method is
much lower than in the previous approaches.

Because we are looking for an overall view of how components process requests, and
because modifying or analyzing all of GlobeDoc’s source code would be a unwieldy un-
dertaking, we decided to use this third approach to monitor a component’s activity. During
a run of the experiment component activity data is collected by a monitoring program that
regularly copies every running process’s stat file from the /proc file system.2 The stat file
provides a snapshot of a process’s status at the time that the file is read. Note that because
each component runs on a separate computer, a separate monitoring program must be run
for each component.

When an experiment run is finished and the components stopped, the data collected by
the monitor programs is filtered and analyzed. Filtering the data for a single component
involves removing data not relevant to the component (i.e., data from processes not related
to the component) and isolating the parts of the data that are of interest in this experiment
(e.g., CPU time used). Analyzing the data involves analyzing process hierarchies and
calculating total CPU time used by the component’s main process and all of its children
at every measurement point.

This initial analysis of the monitor data provides separate activity logs containing the
CPU usage data for each component. Each line in a log file represents a single measure-

1A single component may be implemented by more than one process. On Linux, for example, a component
usually consists of many active processes due to the implementation of (Java) threads as separate processes.

2On Linux the /proc file system is a virtual file system that provides general and per process operating
information in the form of files. This allows data to be gathered from the operating system using regular file
based operations rather than obscure, kernel specific system calls. For more details about the /proc file system
see [65].

6.3. MEASUREMENTS 169

ment point and specifies the absolute time at which the measurement was taken, the time
since the program started, the time since measurement started, the total CPU time used so
far, and the percentage of available CPU time used since the last measurement. All time
measurements are recorded in (fractions of) seconds.

Besides an activity log file the client component also creates a separate log file where
it stores information about requests performed and the RTT of those requests. This file
contains a record for each Web document request as well as a record for each element
request. Each record specifies the time that the request was sent, the time that a reply was
received, and the RTT of the request.

After the monitor data has been filtered and analyzed, the next step is to calculate the
work done by each component due to request processing. The easiest approach would
be to match request information from the client log file to the data from the component
activity logs. Thus, given the start and end times of a request the data corresponding
to that time period would be extracted from each component’s activity log and used to
calculate the work done processing that request. Doing this for every request performed
and taking the average of the results would provide per component values for the average
work done to process a request. Unfortunately, in a distributed environment such as the
DAS-2 where the clocks of the separate computers are not synchronized, this approach is
not feasible. Instead, the approach taken is to determine the work done by a component
over a given period of time and compare that to the number of requests performed in a
similar period of time. This approach provides the same results (average work done to
process a request) but does not rely on synchronized clocks.

Concretely, for each component, the CPU time used is calculated for consecutive
blocks of 60 seconds.3 Next, the average over these blocks is taken providing, for each
component, a value for the average CPU time used per 60 seconds. Following this the
average number of requests made in 60 seconds is calculated using data from the client
logs. Finally, for each component, the CPU time used per 60 seconds is divided by the
number of requests performed in 60 seconds, giving the average CPU time used (or work
done) per request.

Note, that by working with fixed-size time blocks the exact starting and stopping times
of the client and components do not have to be the same. In fact, in this approach, it is
best to cut off the head and tail of the logs as the head may include initialization activity
unrelated to request processing, while the tail may include (idle) activity after all requests
have been processed.

A problem encountered with this approach to component activity monitoring is that it
measures both the activity due to request processing as well as activity that is independent
of request processing. This is illustrated in Figure 6.3, which shows a plot of the gate-
way component’s activity over time. The Y axis of this graph represents the percent of
available CPU time used and the X axis represents the time at which measurements were
made (relative to the start of the experiment). In this graph we see that the component
generally performs a steady amount of work, interspersed with a few (somewhat regularly

3Depending on the experiment parameters, a client can perform between 20 and 400 requests in a 60 second
block. This provides a large enough sample size of measurement points to confidently calculate the average
CPU usage per request.

170 CHAPTER 6. PERFORMANCE EVALUATION

distributed) peaks of greater CPU utilization. The frequency of these peaks seems to be
unrelated to the frequency of the requests processed (the requests were generated approx-
imately every 0.2 seconds, whereas the peaks occur approximately every 50 seconds).

0

5

10

15

20

25

30

35

40

45

50

100 200 300 400 500 600

w
or

k
do

ne
 (

%
 a

va
ila

bl
e

C
P

U
 ti

m
e

us
ed

)

time (s)

Figure 6.3: Work performed by a component when processing requests.

We presume that these peaks are caused by background work (such as running the
Java garbage collector for the components written in Java) done by the component that
is not related to request processing. To verify the hypothesis that these peaks represent
background work, a similar experiment was run with no client requests generated (and
thus no request processing done by the components). The results (once again for the
gateway) from this run of the experiment are shown in Figure 6.4. This graph shows
similar peaks to those seen in Figure 6.3. Note, however, that other than these peaks, the
component performs no other work.

The work done by a component when not processing requests is referred to as that
component’s background activity. In order to determine how much work a component
does due to request processing alone this background activity must be filtered out from
the total request processing activity. To do this it is first necessary to calculate the amount
of work done due to background activity.

To calculate the background activity the experiment is run without performing any
client requests and with component activity monitored as described above. After the ex-
periment run is completed the monitor data is analyzed providing, for each component,
a value for the average amount of work done (per 60 seconds) due to background activ-
ity. To determine the amount of work a component does due to request processing, we
subtract the average work (per 60 seconds) due to background activity from the average

6.4. EXPERIMENTS AND RESULTS 171

0

5

10

15

20

100 200 300 400 500 600

w
or

k
do

ne
 (

%
 a

va
ila

bl
e

C
P

U
 ti

m
e

us
ed

)

time (s)

Figure 6.4: Work performed by a component when not processing requests.

work (per 60 seconds) measured while processing requests. Dividing this value by the
number of requests performed in 60 seconds provides a value for the average amount of
work done per request solely due to request processing.

6.4 Experiments and Results

This section presents an overview of all the profiling experiments run and gives a detailed
description of the experiment parameters and results. Two groups of experiments were
performed. The first has been briefly described above and provides the data used to filter
out noise due to background activity. The second provides the main profiling data for the
experiment. It consists of many runs of the experiment each using different values for the
parameters.

6.4.1 Experiment 1: Background Activity

In this group of experiments a single run of the experiment with no client requests was per-
formed. As explained above, this experiment provides values that are used (in subsequent
experiments) to filter out noise due to background activity. Because no Web requests are
performed, this experiment takes only one parameter: the duration of the experiment. The
duration parameter specifies how long the components will run before being terminated.

172 CHAPTER 6. PERFORMANCE EVALUATION

Results

The experiment was run with a duration parameter of 16 minutes. Note that although
only a single run needs to be performed to measure the background activity, multiple
runs were actually performed and the average background activity calculated. This allows
the stability of the measured values to be verified. Each component’s average over the
multiple runs is presented in Table 6.2. We use the calculated mean values as the base
background activity in the following experiments. Note that the standard deviations in
this table are all low (compared to the means), which shows that the values between runs
did not vary significantly. It is also interesting to point out that the naming service, the
only nonJava process, does not have background activity.

Redirector Translator Gateway GOS NS LS
mean 0.02413 0.02167 0.12867 0.13313 0 0.11280
std. dev. 0.00712 0.00781 0.00735 0.00625 0 0.00724

Table 6.2: Results from experiment 1. Note that the GOS column refers to the replica
object server and the LS column refers to the replica location service leaf node.

6.4.2 Experiment 2: System Performance

In this group of experiments, a number of runs were performed, each with different exper-
iment parameters. The values of parameters used were chosen randomly per run such that
all types of combinations of n, s, and g are accounted for. For example, during runs of the
experiment large documents consisting of few elements and large documents consisting of
many elements should be encountered. Likewise small Web documents consisting of few
elements and small documents consisting of many elements should also be encountered.

The plots in Figure 6.5 show the distribution of the experiment parameters relative
to each other. In this experiment the n parameter was distributed between 1 and 100,
the s parameter between 1 and 1000 and g between 1 and 100. Note, however, that g
has an upper bound, namely the total number of elements in a Web document (a Web
document cannot span more GlobeDoc objects than it has elements). The plots show that
the parameters are all well distributed over the available parameter space.

In all the runs the delay between Web document requests is kept constant at 0.1 sec-
onds. Also, the number of requests actually performed varies between 2400 and 240
depending on the parameters. This is done to keep the duration of an experiment run
reasonable (under one hour - including post-processing and analysis) and is based on pre-
viously observed effects of the experiment parameters on the request RTT.

Results

The raw results of the experiment are presented in the form of scatter plots of the work
done by a component against the experiment parameters. For example, Figure 6.6 shows

6.4. EXPERIMENTS AND RESULTS 173

0
10
20
30
40
50
60
70
80
90

100

0 200 400 600 800 1000

n

s
(a) Distribution of n and s relative to each other

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80 90 100

g

n
(b) Distribution of n and g relative to each other

0

10

20

30

40

50

60

70

80

0 200 400 600 800 1000

g

s
(c) Distribution of s and g relative to each other

Figure 6.5: Distribution of experiment parameter values in their parameter spaces.

plots of the work done by the translator component against the experiment parameters n,
s, and g. These plots suggest a strong relationship between the work done and n and a
possible relationship between the work done and g. It is not clear from the plots, however,
whether there is a relationship between the the work done by the translator and the s
parameter. Result plots for other components will be presented later when analyzing the
results for each specific component.

The relationship between the experiment parameters and the work done by a compo-
nent can be modeled by the following equation.

work = Cn ∗ n + Cs ∗ s + Cg ∗ g + K

This equation represents a cost function where K is a constant and Cn, Cs, and Cg

are coefficients that specify the relative importance of each parameter in determining the
amount of work a specific component does. For some components one or more of the
coefficients may have a value of zero. This means that the corresponding parameters do
not affect the amount of work done by that component.

The values of the coefficients in these functions (i.e., the statistical model for the com-
ponent) are calculated using multiple linear regression analysis [35] [52]. A regression
analysis is performed for each component involved in request processing. In each analy-
sis, the work done per request is taken as the response variable, while the relevant param-

174 CHAPTER 6. PERFORMANCE EVALUATION

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 10 20 30 40 50 60 70 80 90 100

w
or

k
do

ne
 b

y
tr

an
sl

at
or

 (
se

co
nd

s)

n
(a)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 200 400 600 800 1000

w
or

k
do

ne
 b

y
tr

an
sl

at
or

 (
se

co
nd

s)

s
(b)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 10 20 30 40 50 60 70 80

w
or

k
do

ne
 b

y
tr

an
sl

at
or

 (
se

co
nd

s)

g
(c)

Figure 6.6: Work done by the translator component.

eters n, s, and g are taken as the predictor variables (or factors). The regression analysis is
performed hierarchically, starting with the n parameter, then adding the s parameter and
finally the g parameter. The regression analysis results in a model that provides values for
K and each of the three coefficients in the cost function.

Details of the analysis results are presented separately for each component. These
details include two tables, one presenting the coefficients of the calculated model and one
containing a summary of the model’s validity. The first table presents the coefficient for
each predictor variable, as well as the results of the null-hypothesis test and the signifi-
cance of this test. The null-hypothesis test is a t-test that tests how much the calculated
coefficient differs from zero. The result of the t-test, the t value, represents the differ-
ence between the calculated coefficient and zero; the higher the t value, the greater the
difference between the coefficient and zero. The value in the significance column is based
on the t-test result and tells us the probability that the given difference (i.e., the t value)
could have occured by chance.4 Coefficients with significance values less than 0.05 are
considered to be significantly different from zero, those with a significance greater than
0.05 are not significantly different from zero and can be ignored.

4The higher the t value, the lower the probability of it occuring by chance.

6.4. EXPERIMENTS AND RESULTS 175

The second table shows the R, and R squared values for the analysis. These values
indicate how much the model contributes to any observed differences between cases. A
high R value means that most observed differences can be accounted for by the model.
A low R, on the other hand, means that a significant part of the differences cannot be
accounted for by the model. The R squared value represents the amount of variance in the
model relative to the amount of variation in the measurements. Multiplying R squared by
100 gives us the percentage of variation in the measurements that can be explained by the
model. An R squared value of 0.95, for example, means that 95% of the variation between
cases can be explained by the model.

Analysis 1: Redirector

By design the redirector is used only once per Web request. This means that the work it
does per request must be independent of the n, s, and g parameters. As such, a regression
analysis of the redirector is not necessary, instead it is sufficient to present the average
work done per request. This (along with variation and standard deviation) is shown in Ta-
ble 6.3. Because it is in not dependent on any of the experiment parameters, the equation
for work done by the redirector is a constant, namely, the mean from Table 6.3. Thus:

work red = 2.456 ∗ 10−3

Mean Variance Standard deviation
2.456 ∗ 10−3 5.424 ∗ 10−7 7.365 ∗ 10−4

Table 6.3: Statistical summary of the redirector.

Analysis 2: Translator

Presented earlier, Figure 6.6 shows plots of the work done by the translator compared to all
of the experiment parameters. These plots suggest that there is some sort of relationship
between the translator and the experimental parameters. As such it is it is sensible to
perform a regression analysis on the translator’s activity data. The regression analysis is
performed with the translator’s average work done per second as the response variable
and the n, s, and g experiment parameters as the predictor variables (or factors).

The results of the regression analysis are shown in Table 6.4 and Table 6.5. Table 6.4
shows the coefficient for each factor, as well as the results of the null-hypothesis test and
the significance of this test. Note that both the n and the s coefficients are significantly
different from zero, while the g coefficient and the constant are not. This means that only
the n and s parameters play a significant role in affecting the work done by the translator.
The equation for work done by the translator therefore becomes:

work trans = 3.843 ∗ 10−3 ∗ n + 2.014 ∗ 10−5 ∗ s

176 CHAPTER 6. PERFORMANCE EVALUATION

Table 6.5 shows the R, and R squared values for the model. These values are high
which, in this case, means that 99.8% of the variation in the measurements can be ex-
plained by the model (and therefore by the effect of the n and s factors).

Factor Coefficient t-test Significance
Constant (K) 2.356 ∗ 10−3 1.348 .184
Cn 3.843 ∗ 10−3 135.522 .000
Cs 2.014 ∗ 10−5 8.574 .000
Cg 4.405 ∗ 10−5 1.006 .320

Table 6.4: Coefficients for regression analysis of the translator.

R R squared
.999 .998

Table 6.5: Model summary for regression analysis of the translator.

Analysis 3: Gateway

Figure 6.7 shows plots of the work done by the gateway against the experiment param-
eters. Like the translator, these scatter plots show a possible relationship between the
work done and the experiment parameters. It is sensible, therefore, to perform a regres-
sion analysis on the gateway’s activity data. The regression analysis is performed with
the gateway’s average work done per second as the response variable and the n, s, and g
experiment parameters as the predictor variables (factors).

The results of the regression analysis are shown in Table 6.6 and Table 6.7. Table 6.6
shows the coefficient for each factor, as well as the results of the null-hypothesis test and
the significance of this test. Note that all the coefficients are significantly different from
zero. This means that all the parameters, n, s, and g, and the constant play a significant role
in affecting the work done by the gateway. The equation for work done by the gateway
becomes:

work gatew = 3.314 ∗ 10−3 ∗ n + 6.442 ∗ 10−5 ∗ s + 8.984 ∗ 10−3 ∗ g + 2.891 ∗ 10−2

Table 6.7 shows the R, and R squared values for the model. These values are high
which, in this case, means that 99.4% of the variation in the measurements can be ex-
plained by the model (and therefore by the effect of the n, s, and g factors).

6.4. EXPERIMENTS AND RESULTS 177

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1

0 10 20 30 40 50 60 70 80 90 100

w
or

k
do

ne
 b

y
ga

te
w

ay
 (

se
co

nd
s)

n
(a)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1

0 200 400 600 800 1000

w
or

k
do

ne
 b

y
ga

te
w

ay
 (

se
co

nd
s)

s
(b)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1

0 10 20 30 40 50 60 70 80

w
or

k
do

ne
 b

y
ga

te
w

ay
 (

se
co

nd
s)

g
(c)

Figure 6.7: Work done by the gateway component.

Factor Coefficient t-test Significance
Constant (K) 2.891 ∗ 10−2 4.407 .000
Cn 3.314 ∗ 10−3 31.123 .000
Cs 6.442 ∗ 10−5 7.306 .000
Cg 8.984 ∗ 10−3 54.643 .000

Table 6.6: Coefficients for regression analysis of the gateway.

R R squared
.997 .994

Table 6.7: Model summary for regression analysis of the gateway.

Analysis 4: Naming Service

Plots of the work done by the naming service compared to the experiment parameters are
shown in Figure 6.8. These plots show a clear relationship between the work done and the
g parameter. As with the previous two components it is sensible to perform a regression

178 CHAPTER 6. PERFORMANCE EVALUATION

analysis on the naming service’s activity data. The regression analysis is performed with
the naming service’s average work done per second as the response variable and the g
experiment parameter as the predictor variable (or factor). Note that the n and s parameters
are not included in the analysis. This is because the naming service does not deal with the
actual requests and therefore the number of requests and size of the elements requested
cannot affect the amount of work that it does. Although in Figure 6.8(a) there seems to be
a relationship between the work done by the naming service and n, this only reflects the
fact that the values of g are bounded by n.

0

0.01

0.02

0.03

0.04

0.05

0.06

0 10 20 30 40 50 60 70 80 90 100

w
or

k
do

ne
 b

y
na

m
in

g
se

rv
ic

e
(s

ec
on

ds
)

n
(a)

0

0.01

0.02

0.03

0.04

0.05

0.06

0 200 400 600 800 1000

w
or

k
do

ne
 b

y
na

m
in

g
se

rv
ic

e
(s

ec
on

ds
)

s
(b)

0

0.01

0.02

0.03

0.04

0.05

0.06

0 10 20 30 40 50 60 70 80

w
or

k
do

ne
 b

y
na

m
in

g
se

rv
ic

e
(s

ec
on

ds
)

g
(c)

Figure 6.8: Work done by the naming service component.

The results of the regression analysis are shown in Table 6.8 and Table 6.9. Table 6.8
shows the coefficient for each factor, as well as the results of the null-hypothesis test and
the significance of this test. Note that only the g coefficient is significantly different from
zero. The equation for work done by the naming service becomes:

work ns = 7.577 ∗ 10−4 ∗ g

Table 6.9 shows the R, and R squared values for the analysis. These values are high
which, in this case, means that 99.5% of the variation in the measurements can be ex-
plained by the model (and therefore by the effect of the g factor).

6.4. EXPERIMENTS AND RESULTS 179

Factor Coefficient t-test Significance
Constant (K) 1.320 ∗ 10−4 .602 .550
Cg 7.577 ∗ 10−4 96.437 .000

Table 6.8: Coefficients for regression analysis of the naming service.

R R squared
.997 0.995

Table 6.9: Model summary for regression analysis of the name server.

Analysis 5: Location Service

Figure 6.9 shows plots of the work done by the location service components over time (the
plots include background activity). From these graphs it is clear that only the replica leaf
node performs any work during a Web request. It is therefore only necessary to perform
an analysis on the replica leaf node data. Figure 6.10 shows plots of the work done by the
replica leaf node and the experiment parameters. As with the naming service, there is a
clear relationship between the work done by this leaf node and g. The regression analysis
is performed with the location service’s average work done per second as the response
variable and the and g experiment parameter as the predictor variable (or factor). Note
that the n and s parameters are not included in the analysis. This is because the location
service, like the naming service, does not deal with the actual requests and therefore the
number of request and size of the elements requested cannot affect the amount of work
that it does.

The results of the regression analysis are shown in Table 6.10 and Table 6.11. Ta-
ble 6.10 shows the coefficient for each factor, as well as the results of the null-hypothesis
test and the significance of this test. Note that both the g coefficient and the constant
are significantly different from zero. The equation for work done by the location service
becomes:

work ls = 9.925 ∗ 10−4 ∗ g + 6.958 ∗ 10−3

Table 6.11 shows the R, and R squared values for the analysis. These values are
high which, in this case, means that 96.2% of the variation in the measurements can be
explained by the model (and therefore by the effect of the g factor).

Factor Coefficient t-test Significance
Constant (K) 6.958 ∗ 10−3 8.780 .000
Cg 9.925 ∗ 10−4 34.957 .000

Table 6.10: Coefficients for regression analysis of the location service replica leaf node.

180 CHAPTER 6. PERFORMANCE EVALUATION

0

5

10

15

20

100 200 300 400 500 600

w
or

k
do

ne
 (

%
 a

va
ila

bl
e

C
P

U
 ti

m
e

us
ed

)

time (s)

(a) Replica leaf node

0

5

10

15

20

100 200 300 400 500 600

w
or

k
do

ne
 (

%
 a

va
ila

bl
e

C
P

U
 ti

m
e

us
ed

)

time (s)

(b) Master leaf node

0

5

10

15

20

100 200 300 400 500 600

w
or

k
do

ne
 (

%
 a

va
ila

bl
e

C
P

U
 ti

m
e

us
ed

)

time (s)

(c) Root node

0

5

10

15

20

100 200 300 400 500 600

w
or

k
do

ne
 (

%
 a

va
ila

bl
e

C
P

U
 ti

m
e

us
ed

)

time (s)

(d) Tree server

Figure 6.9: Work done by the location service components.

R R squared
.981 .962

Table 6.11: Model summary for regression analysis of the location service leaf node.

Analysis 6: Replica Object Server

Scatter plots of the experiment results for the replica object server are shown in Fig-
ure 6.11. These plots suggest a relationship between the work done by this component
and the n and g parameters. It is unclear whether there is a relationship with the s param-
eter. We perform perform a regression analysis on the replica object server’s activity data
to shed light on the possible relationships. The regression analysis is performed with the
object server’s average work done per second as the response variable and the n, s, and g
experiment parameters as the predictor variables (factors).

The results of the regression analysis are shown in Table 6.12 and Table 6.13. Ta-
ble 6.12 shows the coefficient for each factor, as well as the results of the null-hypothesis
test and the significance of this test. Note that all three parameters and the constant are
significantly different from zero. This means that n, s and g play a significant role in
affecting the work done by this object server. The equation for work done by the replica
object server becomes:

work repl = 6.287 ∗ 10−4 ∗ n + 6.327 ∗ 10−5 ∗ s + 2.445 ∗ 10−3 ∗ g + 2.499 ∗ 10−2

6.4. EXPERIMENTS AND RESULTS 181

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0 10 20 30 40 50 60 70 80 90 100

w
or

k
do

ne
 b

y
re

pl
ic

a
LS

 n
od

e
(s

ec
on

ds
)

n
(a)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0 200 400 600 800 1000

w
or

k
do

ne
 b

y
re

pl
ic

a
LS

 n
od

e
(s

ec
on

ds
)

s
(b)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0 10 20 30 40 50 60 70 80

w
or

k
do

ne
 b

y
re

pl
ic

a
LS

 n
od

e
(s

ec
on

ds
)

g
(c)

Figure 6.10: Work done by the (replica) location service leaf node component.

Table 6.13 shows the R, and R squared values for the analysis. These values are
high which, in this case, means that 87.6% of the variation in the measurements can be
explained by the model (and therefore by the effect of the n and s factors).

Factor Coefficient t-test Significance
Constant (K) 2.499 ∗ 10−2 2.852 .006
Cn 6.287 ∗ 10−4 4.419 .000
Cs 6.327 ∗ 10−5 5.370 .000
Cg 2.445 ∗ 10−3 11.129 .000

Table 6.12: Coefficients for regression analysis of the replica object server.

Analysis 7: Master Object Server

Figure 6.12 shows a plot of the work done (including background activity) by the master
object server over time. From this graph it is clear that this object server does not perform

182 CHAPTER 6. PERFORMANCE EVALUATION

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 10 20 30 40 50 60 70 80 90 100

w
or

k
do

ne
 b

y
re

pl
ic

a
ob

je
ct

 s
er

ve
r

(s
ec

on
ds

)

n
(a)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 200 400 600 800 1000

w
or

k
do

ne
 b

y
re

pl
ic

a
ob

je
ct

 s
er

ve
r

(s
ec

on
ds

)

s
(b)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 10 20 30 40 50 60 70 80

w
or

k
do

ne
 b

y
re

pl
ic

a
ob

je
ct

 s
er

ve
r

(s
ec

on
ds

)

g
(c)

Figure 6.11: Work done by the replica object server component.

R R squared
.936 .876

Table 6.13: Model summary for regression analysis of the replica object server.

any work related to Web document requests. As such it is not necessary to perform a
regression analysis on the master object server data. The equation for work done by the
master object server becomes:

work master = 0

reflecting the fact that the master object server is not involved in processing Web docu-
ment requests.

Analysis 8: Request Round Trip Time

As with work done by the individual components it is also possible to make a cost func-
tion that relates RTT to the experiment parameters. Determining the coefficients for this

6.4. EXPERIMENTS AND RESULTS 183

0

5

10

15

20

100 200 300 400 500 600

w
or

k
do

ne
 (

%
 a

va
ila

bl
e

C
P

U
 ti

m
e

us
ed

)

time (s)

Figure 6.12: Work done by master object server while processing requests.

cost function is also done using multiple linear regression. The regression analysis is per-
formed with the RTT per request as the response variable and the n, s, and g experiment
parameters as the predictor variables (or factors).

The results of the regression analysis are shown in Table 6.14 and Table 6.15. Ta-
ble 6.14 shows the coefficient for each factor, as well as the results of the null-hypothesis
test and the significance of this test. Note that all the coefficients (except the constant) are
significantly different from zero. This means that all of the n, s, and g parameters play a
significant role in affecting the RTT. The equation for RTT becomes:

RTT = 1.820 ∗ 10−2 ∗ n + 6.174 ∗ 10−4 ∗ s + 1.467 ∗ 10−2 ∗ g

Table 6.15 shows the R, and R squared values for the analysis. These values are
high which, in this case, means that 86.9% of the variation in the measurements can be
explained by the model (and therefore by the effect of the n, s, and g factors).

Factor Coefficient t-test Significance
Constant (K) −6.451 ∗ 10−2 −.603 .550
Cn 1.820 ∗ 10−2 10.476 .000
Cs 6.174 ∗ 10−4 4.290 .000
Cg 1.467 ∗ 10−2 5.467 .000

Table 6.14: Coefficients for regression analysis of the RTT.

Note that the coefficient for s implies a transfer rate of 1.5Mbit/sec. This is very low
compared to the 100Mbit/sec capacity of the network used. Recent work on the Globe

184 CHAPTER 6. PERFORMANCE EVALUATION

R R squared
.932 .869

Table 6.15: Model summary for regression analysis of the RTT.

implementation has found and removed a significant bottleneck with regards to transfer
of data that has significantly improved the transfer rate.

6.5 Conclusion

This chapter examined the performance of GlobeDoc by profiling the system components
to determine the amount of work each component does while handling a single Web doc-
ument request. Based on the measurements made, cost functions relating Web document
properties to the amount of work required to process a request for that Web document
have been derived.

Based on these cost functions, it is possible to determine the relative amount of work
done by each component. This requires calculating the amount of work done by each
component as a percentage of total work done by all the components. Based on the cost
functions it is also possible to examine the effects that the various Web document request
parameters have on the relative amount of work done by the components. Together, this
provides us with a good overview of which components do the most work when process-
ing requests and, therefore, a starting point for code optimization. Figures 6.13, 6.14,
and 6.15 show how the percentage of total work done changes as a function of the indi-
vidual experiment parameters.

Figure 6.13 shows that as the number of elements in a Web document increases that
most of the work load increase is experienced by the translator and gateway components.
Figure 6.14 shows that as the total size of a Web document increases, the object server and
the gateway components end up performing a majority of the request processing work.
Likewise Figure 6.15 shows that when a Web document spans many GlobeDoc objects
most of the work is done by the gateway component. In all three of these graphs we see
that the gateway is one of the most active components.

Reducing the amount of work done by the gateway should, therefore, be the first
priority when optimizing the GlobeDoc architecture. Furthermore we see that keeping the
granularity of the Web documents low (that is storing most if not all of a Web documents
elements in a single GlobeDoc object) reduces the number of binds needed and hence the
work done by the gateway.

6.5. CONCLUSION 185

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90 100

%
 o

f t
ot

al
 w

or
k

do
ne

n (with s = 0, g = 0)

redirector
translator
gateway

name service
location service

object server

Figure 6.13: Overview of the relative work done by components as the n parameter in-
creases.

0

20

40

60

80

100

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

%
 o

f t
ot

al
 w

or
k

do
ne

s (with n = 0, g = 0)

redirector
translator
gateway

name service
location service

object server

Figure 6.14: Overview of the relative work done by components as the s parameter in-
creases

186 CHAPTER 6. PERFORMANCE EVALUATION

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90 100

%
 o

f t
ot

al
 w

or
k

do
ne

g (with n = 0, s = 0)

redirector
translator
gateway

name service
location service

object server

Figure 6.15: Overview of the relative work done by components as the g parameter in-
creases

Chapter 7

Summary and Conclusions

7.1 Summary

The performance problems plaguing the World Wide Web were introduced in Chapter 1.
Among these problems are those caused by poor scalability of its architecture. In particu-
lar there are the problems of scaling with regards to the geographic distribution of clients
as well as scaling with regards to the number of client requests a single server must pro-
cess. It was argued that an effective solution to these scalability problems must localize
traffic, that is, it should reduce the distances between clients and the content they wish to
access, and reduce the number of requests a single server must process.

An effective technique for achieving localization is replication. Although replication
has been used as the basis of many proposed solutions to the Web’s performance prob-
lems, it is usually provided it as a one-size-fits-all solution, that is, the replication must
be applied universally to all Web documents. The central claim of this dissertation is that,
in order to be scalable, it is not enough for content to be replicated. The underlying ar-
chitecture must be flexible enough to allow replication policies (and associated coherence
policies) to be applied on a case-by-case basis. The first chapter closed by introducing
GlobeDoc as such an architecture.

Chapter 2 discussed current approaches to solving the Web’s scalability related per-
formance problems. These solutions are divided into three categories: client-oriented
solutions such as browser and proxy caching, server-oriented solutions such as server
caching and clustering, and replication-based solutions such as mirroring and content de-
livery networks. A common characteristic shared by all these solutions is that they take
a one-size-fits-all approach to applying relevant policies. In order to illustrate the inferi-
ority of one-size-fits-all solutions, this chapter presented a simulation-based experiment
that compared the performance of per-document replication policies to one-size-fits-all
policies. The results of this experiment show that per-document policies provide better
(i.e., closer to optimal) performance gains than one-size-fits-all policies.

GlobeDoc, the approach for a scalable Web infrastructure covered in this dissertation,
was presented in Chapter 3. The GlobeDoc architecture is based on Globe distributed

187

188 CHAPTER 7. SUMMARY AND CONCLUSIONS

shared objects. Globe’s key characteristic is that every Globe object is responsible for
determining and implementing its own replication and coherence policy. This property of
Globe allows GlobeDoc to provide support for per-document replication policies.

The GlobeDoc model groups logically related Web resources into Web documents.
Each Web document is represented by, and contained in, a GlobeDoc object (which is
implemented as a Globe distributed shared object). Web resources are stored in Globe-
Doc objects as elements. Every GlobeDoc object implements methods that allow clients
to access and modify the object’s elements. However, in order to invoke methods on a
GlobeDoc object, a client must first bind to the object. Binding causes a local representa-
tive of the GlobeDoc object to be placed in the client’s address space. The client invokes
methods on this local representative and the GlobeDoc object’s replication and coherence
policies determine how that invocation is processed. A method invocation may, for exam-
ple, cause a message to be sent to all of a GlobeDoc object’s replicas, or it may simply
cause local state to be updated.

The GlobeDoc architecture provides the runtime support and external services re-
quired to access and use GlobeDoc objects. The architecture also provides all the ser-
vices necessary to access GlobeDoc objects from traditional (i.e., GlobeDoc-unaware)
Web clients. The GlobeDoc architecture was presented in detail in Chapter 4. This chapter
described the design and implementation of key components and services of the Globe-
Doc architecture. These include the object server, the implementation repository, clients,
and support for shared local replicas. Core services, such as the naming service and the
location service, which were not designed as part of the GlobeDoc project are described
elsewhere [47] [12].

The Globe infrastructure directory service (GIDS) is a meta service that keeps track of
all other essential GlobeDoc services, it stores meta-data that describes other servers and
the services that they provide. This meta-data can, for example, be used to find servers
to host GlobeDoc objects and their replicas. GIDS was discussed in detail in Chapter 5.
Besides a description of the design of GIDS, this chapter also describes an implementation
of GIDS based on existing LDAP and DNS technologies.

Chapter 6 provided a performance evaluation of the architecture and its components.
In particular this chapter evaluated the relative performance of each component in the ar-
chitecture by profiling the component’s CPU usage while processing client requests. This
performance evaluation provided insight into the relative impact of each component on
the total delay a client experiences when requesting a Web document using GlobeDoc. In
particular it showed that the gateway component is crucial with regards to total perfor-
mance as it is responsible for most of the work done. The evaluation also showed that
grouping related Web resources into a single GlobeDoc object reduces the load on key
components and leads to improved performance.

7.2. CONCLUSIONS 189

7.2 Conclusions

7.2.1 Evaluation

Chapter 1 outlined the requirements that an infrastructure wishing to provide an effective
solution to the Web’s performance problems must fulfill. Such an infrastructure must:

• Localize traffic

• Limit the load on any single server

• Decouple Web documents from the servers providing their contents.

Chapter 1 also specified the effects that an effective solution must have on performance.
Performance, as perceived by a Web document’s clients, must be:

• Maximized (i.e., connection time, latency, and delivery time must be minimized)

• Independent of the geographic distribution of clients

• Independent of a Web document’s access patterns

• Independent of any other Web document’s access patterns.

The following sections evaluate GlobeDoc based on these requirements.

Localize traffic

When traffic is localized, client requests and associated replies travel only a short distance
over the network. GlobeDoc achieves localization of traffic in two ways. The first is by
widely distributing Globe access points (GAPs) and allowing each client to communicate
with its nearest GAP. Ensuring that GAPs are widely distributed increases the chances of
a GAP being close to any particular client, thus reducing the average distance between
client and GAP. By running a GAP locally (i.e., on a user’s workstation or on a machine
on the local network), a user can effectively reduce the distance to the nearest GAP to
zero. The second way that GlobeDoc achieves localization is by allowing content to be
replicated on widely distributed object servers. Because a GAP will always connect to
the nearest replica of a GlobeDoc object, replicating GlobeDoc objects on object servers
close to expected clients considerably reduces the distance between replicas and GAPs.
Depending on the replication policy implemented by the object, the choice of where to
place a replica can be made manually by the GlobeDoc object owner, or automatically by
the object itself. In order to effectively localize traffic, it is also important to have widely
distributed object servers where replicas can be placed. GIDS is used to find object servers
at appropriate locations.

190 CHAPTER 7. SUMMARY AND CONCLUSIONS

Limit server load

In GlobeDoc, creating widely distributed replicas of GlobeDoc objects helps to limit the
load on individual object servers. With widely distributed replicas, the number of requests
processed by any single replica is kept low, thus reducing the load on the object server
hosting the replica.

Ideally, in order to reduce a particular object server’s load, it should also be possible
to move a replica from a heavily loaded object server to a lightly loaded one. Although
technically possible, this is a complicated procedure in the current implementation of
GlobeDoc. Moving a replica requires that all clients connected to the replica first be
unbound from it and then be rebound to the replica at its new location.

Decouple servers and Web documents

A client normally refers to a GlobeDoc object by its name (usually embedded in a URN).
Because of this, and due to Globe’s separation of naming, identity, and location, Globe-
Doc objects are not bound to any particular server. As such, creating a new replica or
destroying an existing replica affects only a small portion of clients (e.g., those connected
to the destroyed replica). Clients connected to other replicas are not affected. Likewise,
new clients can still bind to the object without having to use a new name. This is impor-
tant because it makes it possible to add, remove, and move replicas during the lifetime of
a GlobeDoc object without invalidating existing URNs for that object.

Maximized performance

Maximizing performance requires minimizing connection time, latency, and delivery
time. For regular (GlobeDoc-unaware) Web clients, connection time refers to the time
it takes to resolve a URL and contact the corresponding server. When accessing a Globe-
Doc using an embedded URN this time is divided into three parts: the time it takes to
contact the redirector, the time it takes to receive a reply from the redirector, and the time
it takes to contact the GAP. The redirector, being a centralized component, is a poten-
tial bottleneck and can greatly increase a client’s connection time (either because it is far
away from the client, or because a heavy load delays request processing). The Globe-
Doc architecture minimizes the impact of the redirector in two ways. By replacing the
redirector’s address with its own address in all embedded URNs that pass through it, the
translator reduces the number of times a client must contact the redirector. In this way, a
client contacts the redirector only once for every GlobeDoc object it accesses rather than
for every element it accesses. In order to minimize the time it takes for the redirector to
return a reply, the redirector stores information about the client’s location and its nearest
GAP in a cookie on the client’s machine. Every time a client contacts the redirector the
information in the cookie is used to return a quick reply. This way the redirector avoids
having to look up the client’s location and having to find its nearest GAP. Finally, the time
it takes a client to connect to a GAP is minimized by having clients always connect to
their nearest GAP and by placing GAPs as close to clients as possible.

7.2. CONCLUSIONS 191

For GlobeDoc-aware clients, connection time refers to the time it takes to resolve a
GlobeDoc URN and bind to the corresponding GlobeDoc object. Caching object bindings,
as described in Chapter 4, minimizes the effect of binding on connection time.

Latency is affected in two ways. It is affected by the latency of underlying networks,
and it is affected by the time it takes a server to process a request and start returning results.
In the first case latency is minimized by reducing the amount of traffic sent over higher
latency networks (such as wide-area network links). This is a direct result of localizing
network traffic.

In the second case the latency is affected by the time it takes for the gateway to bind
to the appropriate GlobeDoc object, the time it takes for the gateway to request and re-
ceive the requested element. The time it takes for the gateway to bind to the requested
object can be minimized by caching object bindings in the gateway. The time it takes the
gateway to request an element from the replica and receive a reply is largely dependent
both on the replication policy implemented by the object (e.g., whether the replica has
to contact a master to verify the freshness of its state, whether the replica has to retrieve
the state form another replica first, etc.) and the network connection between the gateway
and the replica. By strategically placing replicas close to GAPs the effect of the network
connection between the gateway and replica is minimized. Likewise, by choosing an ap-
propriate replication policy, the amount of work done by the replica before an element
can be returned can also be minimized (e.g., by transferring state to the replica as soon
as a replica is created so that when a request comes in the state is already locally avail-
able). This will generally require some sort of tradeoff, for example, between speed and
consistency guarantees.

Delivery time for Web clients is dependent on the time it takes to return an element
from the GAP to the client. This is generally affected by the network link between the
client and GAP. By localizing the network traffic, this time is kept to a minimum.

Independence of performance from geographic distribution of clients

Keeping performance independent from geographic distribution allows all clients (no mat-
ter where they are located) to experience similar levels of performance when accessing a
Web document. This means that there are no clients closer to a Web document who ex-
perience better performance, or clients further away who experience worse performance.
GlobeDoc provides this independence in two ways. By widely distributing GAPs a large
number of potential clients can be brought closer to the access points. This helps to local-
ize traffic, which helps to improve performance. Also, by placing replicas in areas where
client requests are expected to come from, clients will generally find themselves close to
a replica of the GlobeDoc object they are accessing. This also helps to localize traffic and
thus helps to improve performance. Both help to maximize the number of clients that are
close to a Web document and minimize the number of clients that are far away from a
Web document.

192 CHAPTER 7. SUMMARY AND CONCLUSIONS

Independence of performance from access patterns

When performance is independent from access patterns, a Web document’s clients ex-
perience consistent levels of performance despite changing access patterns. Thus, for
example, clients accessing different Web documents do not experience different levels of
performance because one document is more popular than another. GlobeDoc allows ac-
cess to Web documents to be independent from the document’s access patterns through its
flexible per-document approach to replication. By tailoring the replication policy used, as
well as the placement of replicas, to the expected popularity of a document, a consistent
level of performance can be provided (and maintained).

This works well for Web documents with stable access patterns, however, many Web
documents have access patterns that change over time. It is important that the performance
experienced by clients remains stable even as access patterns change. For example, clients
accessing a Web document during a flash crowd should not experience a degraded level
of performance compared to those accessing that document under normal circumstances.
GlobeDoc’s support for flexible application of replication policies makes this possible.
Slowly changing access patterns can be handled by manually adding or removing replicas,
while rapid and unexpected changes in access patterns must be handled by dynamic and
adaptive replication policies. These are parameterized replication policies whose behavior
can be adapted as access patterns change. Note that dynamic and adaptive replication
policies have not been examined in this dissertation. As such, no claim can (yet) be
made for the independence of GlobeDoc from access patterns. Studying the application
of dynamic and adaptive replication patterns in GlobeDoc will be the subject of future
work, and will be described briefly in Section 7.3.

Independence from other Web documents

When a Web document becomes popular, the number of request for its elements and there-
fore the load on the servers hosting the contents increases. Such an increase in popularity
should not affect other, unrelated, Web documents. Thus, the increased load caused by a
popular document should not affect access to other Web documents which may be hosted
on the same server. A fundamental property of the GlobeDoc architecture is that Globe-
Doc objects are not dependent on any single server. Because of this, replicas of popular
Web documents can be placed on dedicated servers, so that the increased load does not
affect the performance for other documents. These replicas can be added and removed as
needed, depending on a document’s popularity. Likewise, by widely replicating popular
Web documents, the load on, and the traffic to and from, any single server can be kept at
a reasonable level.

7.2.2 Observations

Designing and implementing GlobeDoc as a Globe-based Web architecture has provided
some insights into building a scalable wide-area distributed application, as well as practi-
cal insights into building an application using Globe.

7.2. CONCLUSIONS 193

Separation of Concerns

An important software engineering principle to follow when building a scalable wide-area
distributed system is separation of concerns [77]. This involves splitting a problem into
a number of concerns and addressing each concern individually. It allows a developer to
identify, encapsulate, and develop those parts of a system that are relevant to a particu-
lar concern. In Globe, for example, we see that the concerns of object naming, object
identification and object location have been separated. This has led to separate services
for naming and location, as well as separate means of identifying objects. Likewise by
decomposing the local representative into a semantics, control, replication and communi-
cation subobject, the issues of replication and communication can be addressed separately
from an object’s semantics.

By separating concerns in this way, it is possible to create general solutions for issues
that apply to all distributed systems. Designing GlobeDoc, for example, did not require
the design of a new naming and location scheme. Furthermore implementations of repli-
cation and communication policies can also be shared between different object types. For
example, both GlobeDoc and GDN [10] use the same implementations of replication and
communication policies.

Separation of concerns is evident in the design of the GAP and GIDS. In the GAP
the translator and gateway are designed as separate components because they have clearly
independent tasks. Likewise, in GIDS, locating resource information and storing this
information are separate concerns. This is reflected in the GIDS design where the location
aspect is separated from the resource management aspect.

Hierarchies

Although a hierarchical structure is generally a good approach to providing scalability,
it is not without problems. For one, hierarchies, as in the case of hierarchical caches,
may cause more harm than good if they become too deep (i.e., when it takes longer to
traverse the hierarchy than to simply connect to a central or remote server). Hierarchies
also form a problem from an administrative point of view. A hierarchy (or at least the
upper levels of the hierarchy) must generally be administered by a trusted organization or
person. This means that to set up an effective worldwide hierarchy (as is necessary for the
location service and for GIDS) it is necessary to find enough trustworthy nodes to form a
stable base for the hierarchy. Also, in the case of the location service, a central node must
administer the tree structure and always be available to new nodes joining the network. It
would be interesting to look for alternative (nonhierarchical) models that could be used
in the location service and GIDS. Such nonhierarchical models could, for example, make
use of peer-to-peer networks and related distributed hash table technology [101, 93].

Integration of Different Architectures

Providing seamless integration between GlobeDoc and the World Wide Web has shown
that it is difficult to integrate architectures that are based on fundamentally different mod-
els. The Web is based on a client-server model: resources are located on single servers and

194 CHAPTER 7. SUMMARY AND CONCLUSIONS

clients request resources from these servers. In the Web, resources are identified by URLs,
which identify a resource location. As such, the Web does not separate the concepts of
naming and location. GlobeDoc, on the other hand, does separate the notions of name and
location. A GlobeDoc object’s name does not specify the location of that object, nor is an
object bound to any single location. Seamlessly integrating these approaches to naming
and location resulted in the introduction of the redirector, which introduced a centralized
component (and potential bottleneck) to an otherwise decentralized architecture.

Besides different naming and location models, GlobeDoc and the Web also differ in
their basic connection models (and protocols). This difference led to the introduction of
the GAP. As mentioned earlier, in order for the GAP approach to be scalable, many GAPs
have to be deployed, widely spread over the network. This network of GAPs is in fact a
second network, parallel to the network of object servers required to host GlobeDoc ob-
jects. It also means that clients must find a nearest GAP, which requires the deployment
of a second location service, besides the Globe location service. This second location ser-
vice is implemented in the redirector and is a centralized service which maps IP addresses
to locations (geographic coordinates) and then finds the closest GAPs.

Globe

Using Globe to build a distributed application has many benefits, the greatest being that
Globe provides much of the architectural support and services needed to build such an
application. In theory building a Globe application does not require a programmer to
understand or worry about the distributed nature of the application. It should suffice to
define an interface and implement a semantics object. In practice, however, the separation
between an application’s interface, its semantics, and its distributed nature is not quite as
clean as desired (this has also been pointed out in [10]). When designing the interface for
a Globe object, one must keep in mind that the object state may be remote and possibly
replicated. This is reflected in the limited type support of the Globe IDL (e.g., no sup-
port for passing pointers or references). GlobeDoc’s lock interface is an example of an
interface where the semantics may fail depending on the distribution (and in particular the
coherence policy) used. Likewise, when handling large data one must take into account
the possible cost of such operations (e.g., that the operation might block for a long time if
a large amount of data is sent over the network) and the various ways that such operations
may fail. When implementing the semantics object there are also restrictions that remind
the developer that the application may be distributed. For example, it is not possible to
bind to other Globe objects from a within semantics object.

Because Globe requires many services to be run and because each component must
connect to other remote components, it is not trivial to install, configure, and run a Globe
site. In fact, despite clear documentation, setting up a Globe site is still a complex task.
Setting up a Globe site from behind a firewall or NAT gateway is even more difficult. Work
is being done to make this easier and good defaults as well as integration with GIDS has
already made Globe setup easier. It is important that, in the future, globe and GlobeDoc
clients can be installed and run without requiring the user to do any configuration.

7.3. FUTURE WORK 195

7.3 Future Work

7.3.1 Replication Policies

During the development of GlobeDoc we looked at the subject of choosing appropriate
replication policies. Initially an attempt was made to assign replication policies (or at least
determine replication requirements) based on Web document characteristics (such as size,
type of content, number of elements, etc.) [55, 56]. Unfortunately, it was found that these
kinds of characteristics are not good predictors of a Web document’s access patterns. In
the end, replication policies were assigned based on common sense prediction of a Web
document’s popularity. Assigning policies in this way is, of course, not very accurate. A
related project was set up to look at the possibility of predicting future access patterns
based on analysis of past access patterns [82]. The results of this research showed that
such prediction was possible and has led to the development of an adaptive replication
policy (i.e., a policy whose behavior is modified by feedback about its past performance).
Because an adaptive policy requires data about past access patterns to decide on an ap-
propriate policy, there is a significant chance that the policy will perform badly when a
Web document is first deployed. Given this start-up problem it would be interesting to
re-examine the effect that a Web document’s semantic characteristics have on its (initial)
access patterns and replication requirements. If a relationship (even a weak relationship
may be useful) between the two is found, this can be used to initialize the starting state of
an adaptive policy. This would provide a starting scenario which was better than the com-
mon sense approach currently used, and would allow quicker convergence to an optimal
situation.

7.3.2 GlobeDoc-aware Clients

Different approaches to developing GlobeDoc-aware clients were discussed in Chapter 4.
Building and deploying one or more of the described clients would provide extra insight
into the ease or difficulty of building GlobeDoc-aware applications. Also, because a
GlobeDoc-aware client binds directly to an object, the redirector and GAP would not
be required to access GlobeDoc content. Comparing the current GlobeDoc-unaware ap-
proach to a GlobeDoc-aware approach would, therefore, provide more insight into the
actual cost of the GAP and redirector components. Furthermore, by bringing the LR into
the client, GlobeDoc-aware browsers would also allow different replication policies to be
explored. For example, policies that cache content locally in the client could replace the
one-size-fits-all browser caching policies used in clients today.

7.3.3 Experiments

Chapter 6 presented experiments that examined the performance of individual GlobeDoc
architectural components. The work done by these components is not the only factor that
may affect the performance of the GlobeDoc system as a whole. Properties of the network
connections between components will likely affect overall performance as well. It would

196 CHAPTER 7. SUMMARY AND CONCLUSIONS

be interesting to perform experiments similar to those described in Chapter 6 but where
characteristics (e.g., bandwidth, latency, etc.) of the network connections between the
components are modified. Also, given the results from Chapter 6 it would be interesting to
examine the performance of components such as the gateway in more detail (e.g., perform
more detailed instruction level profiling) The object server also plays an important role in
the architecture, and it would be interesting to determine how its performance is affected
by the number of object’s hosted. Similarly, it would be interesting to examine how the
load on one object affects the performance of other (unrelated) objects.

7.3.4 Security

Security of the GlobeDoc architecture has not been discussed in this dissertation. Never-
theless security is an important aspect in any architecture. As such, security of GlobeDoc
and the Globe architecture are currently the subject of ongoing research. In particular,
we are developing an extension to GlobeDoc that allows clients to verify that elements
received from a GlobeDoc object have not been tampered with (e.g., by a malicious ob-
ject server). This extension allows the contents of a GlobeDoc object to be signed by the
creator, and allows the signature to be retrieved along with the contents whereupon the
contents can be checked for validity. More on this approach can be found in [84].

7.3.5 Support for Dynamic Content

As mentioned in Chapter 3 the GlobeDoc model does not support dynamic content gen-
eration. Nevertheless dynamic content is gaining importance and makes up a large part of
current Web content. For the future success of GlobeDoc it will be necessary to incorpo-
rate dynamic contents into the model. Chapter 3 presented two approaches to integrating
static and dynamic contents in GlobeDoc. A sketch of a third approach, called the Globe
Web component (GWC) approach, is presented here.

Generally, dynamic content generation is used to create Web pages that are a mix
of predefined user interface elements and dynamic data elements. While processing a
request the data elements are either generated or retrieved from a database, merged with
predefined interface elements, and returned as a complete Web page. This is achieved by
executing a server-side program that is responsible for generating or accessing the data
and building the page. For example, in an online photo album, the data, photos and photo
meta-data, such as captions, are stored in a database. When an index page is requested, the
server executes code that queries the database for a list of photos and then adds HTML
code representing a list of the photos with links to their thumbnails to an index page
HTML template. The completed in template is then returned to the client as a regular
HTML page.

Depending on the server used, the program responsible for generating the content can
be stored as an executable on the server, or it can be embedded in an HTML page. When
the server is asked to retrieve a page corresponding to an executable, that executable is run
and the output returned to the client. Examples of this approach include CGI binaries [27]
and Java Servlets [30]. When the server is asked to retrieve an HTML page with embedded

7.3. FUTURE WORK 197

code it processes the page, executes any code it comes across, and replaces the code with
the execution results. Examples of this approach include PHP [9], and JSP [34].

Generally, no matter which approach is taken, the code for generating data and the
interface elements are highly entwined. In the photo album example, the code must per-
form database queries, generate HTML code, and insert HTML snippets into an HTML
template. It is this entwined nature that makes it difficult to successfully replicate dynam-
ically generated Web pages. If such a page is replicated, then the database content must
also be replicated, otherwise the code cannot execute properly. Replicating a database
is difficult. Not only is it difficult to ensure that the data remains consistent, but it also
requires all potential replica sites to run the same database software. Besides the fact that
replicating the data is difficult, it may also be unnecessary to replicate the data at the same
sites as the HTML and executable code.

The GWC approach to dynamic contents proposes to separate the interface part of a
dynamic Web document from the data part. All the static elements that make up the inter-
face, including HTML templates and the code that generates and manipulates HTML, are
stored in a GlobeDoc object, while the code that generates or manages data is encapsulated
in an application-specific Globe object. In the photo album example, the HTML template
and the code that transforms a list of photo names to HTML is stored in a GlobeDoc ob-
ject. The photos themselves are stored in a photo album Globe object, a Globe object that
implements a special photo album interface (with methods to add photos, retrieve photos,
generate thumbnails, list photos, etc.).

C

Gateway

GlobeDoc Object

Globe PhotoAlbum Object

5

1

2

4

3

Figure 7.1: GWC approach to dynamic content.

198 CHAPTER 7. SUMMARY AND CONCLUSIONS

Figure 7.1 shows a client accessing dynamic content through a GlobeDoc object and
a GWC enabled GlobeDoc gateway. In this figure the client contacts the gateway with
a request for a particular GlobeDoc URN (step 1). The requested elements are retrieved
from the GlobeDoc object (step 2), and are processed by the gateway. Any code embedded
in the retrieved elements is executed as described above (step 3). The code causes the
gateway to bind to a photo-album Globe object and invoke methods on that object. The
invoked methods set or retrieve photos and photo meta-data (step 4). The data retrieved
from the photo album object is converted to HTML and merged into the HTML template.
Finally, the completed HTML document is returned by the gateway to the client (step 5).

The GWC approach has a number of advantages over the traditional approach to dy-
namic content. First the interface logic is clearly separated from the application logic.
Thus, for example, the creator of the photo album HTML interface does not have to know
the best way to store, manipulate and replicate photos. Likewise, the creator of the photo
album object need not be concerned about issues related to user interface design. A sec-
ond benefit is that the application object can be used with many different interfaces. For
example, the same photo album object could be accessed by a user with a specialized
photo album GUI, a user using a regular HTML interface and a user using a simplified
mobile device HTML interface. Likewise the interfaces can be used with different im-
plementations of an application object, as long as the object’s interfaces remain the same.
Thus, even if the photo album object is updated to contain a radically different storage
mechanism, none of the existing interfaces need to be modified.

This was a sketch of a possible approach to providing dynamic content using Globe-
Doc and Globe. The GWC approach needs to be worked out further and implemented as
a prototype to identify potential problems and find solutions to these problems.

Bibliography

[1] M. Abrams, C. R. Standridge, G. Abdulla, S. Williams, and E. A. Fox. Caching
proxies: Limitations and potentials. In Proceedings of the Fourth International
World Wide Web Conference, Boston, MA, USA, Dec. 1995.

[2] C. C. Aggarwal, J. L. Wolf, and P. S. Yu. Caching on the World Wide Web. IEEE
Transactions on Knowledge and Data Engineering, 11(1):95–107, 1999.

[3] Akamai Technologies Inc. http://www.akamai.com/.

[4] C. Allison, M. Bramley, and J. Serrano. The World Wide Wait: Where does the
time go. In Proceedings of the Euromicro 98 Conference, Vasteras, Sweden, Aug.
1998.

[5] P. A. Alsberg and J. D. Day. A principle for resilient sharing of distributed re-
sources. In Proceedings of the Second International Conference on Software Engi-
neering, San Francisco, CA, USA, Oct. 1976.

[6] E. Anderson, D. Patterson, and E. Brewer. The MagicRouter, an application of fast
packet interposing. Technical report, University of California, Berkeley, CA, USA,
May 1996.

[7] K. Andrews, F. Kappe, H. Maurer, and K. Schmaranz. On second generation hy-
permedia systems. Journal of Universal Computer Science (Pilot Issue), 0(0):127–
135, 1994.

[8] M. Baentsch, L. Baum, G. Molter, S. Rothkugel, and P. Sturm. World-Wide Web
Caching – The Application level view of the Internet. IEEE Communications Mag-
azine, 35(6):170–178, 1997.

[9] S. S. Bakken, A. Aulbach, E. Schmid, J. Winstead, L. T. Wilson, R. Lerdorf,
A. Zmievski, and J. Ahto. PHP Manual. The PHP Documentation Group, Apr.
2003.

[10] A. Bakker. An Object-Based Software Distribution Network. PhD thesis, Vrije
Universiteit, Amsterdam, the Netherlands, 2002.

199

200 BIBLIOGRAPHY

[11] A. Bakker, M. van Steen, and A. Tanenbaum. Replicated invocation in wide-area
systems. In Proceedings of the Eighth ACM SIGOPS European Workshop, Sintra,
Portugal, Sept. 1998.

[12] G. Ballintijn. Locating Objects in a Wide-area System. PhD thesis, Vrije Univer-
siteit, Amsterdam, the Netherlands, 2003.

[13] G. Ballintijn, P. Verkaik, E. Amade, M. van Steen, and A. S. Tanenbaum. A scal-
able implementation for human-friendly URIs. Technical Report IR-466, Vrije
Universiteit, Amsterdam, the Netherlands, Nov. 1999.

[14] P. Barford and M. Crovella. Generating representative Web workloads for network
and server performance evaluation. In Proceedings of the Joint International Con-
ference on Measurement and Modeling of Computer Systems - Performance Evalu-
ation Review (SIGMETRICS ’98/ PERFORMANCE ’98), Madison, WI, USA, June
1998.

[15] P. Barford and M. Crovella. Measuring Web performance in the wide area. Perfor-
mance Evaluation Review, 27(2):37–48, Aug. 1999.

[16] T. Bates, E. Gerich, L. Joncheray, J.-M. Jouanigot, D. Karrenberg, M. Terpstra, and
J. Yu. Representation of IP routing policies in a routing registry. RFC 1786, Mar.
1995.

[17] A. Bestavros and C. Cunha. Server-initiated document dissemination for the
WWW. IEEE Data Engineering Bulletin, 19(3):3–11, Sept. 1996.

[18] C. M. Bowman, P. B. Danzig, D. R. Hardy, U. Manber, and M. F. Schwartz. The
Harvest information discovery and access system. Computer Networks and ISDN
Systems, 28(1–2):119–125, Dec. 1995.

[19] M. Bowman, L. Peterson, and A. Yeatts. Univers: An attribute-based name server.
Software – Practice and Experience, 20(4):403–424, 1990.

[20] P. Cao and S. Irani. Cost-aware WWW proxy caching algorithms. In Proceedings
of the First USENIX Symposium on Internet Technologies and Systems, Monterey,
CA, USA, Dec. 1997.

[21] P. Cao and C. Liu. Maintaining strong cache consistency in the World Wide Web.
IEEE Transactions on Computers, 47(4):445–457, 1998.

[22] P. Cao, J. Zhang, and K. Beach. Active Cache: Caching dynamic contents (objects)
on the Web. In Proceedings of the IFIP International Conference on Distributed
Systems Platforms and Open Distributed Processing (Middleware ’98), The Lake
District, UK, Sept. 1998.

[23] V. Cate. Alex – a global file system. In Proceedings of the USENIX File System
Workshop, Ann Arbor, MI, USA, May 1992.

BIBLIOGRAPHY 201

[24] A. Chankhunthod, P. Danzig, C. Neerdaels, M. F. Schwartz, and K. J. Worrell.
A hierarchical Internet object cache. In Proceedings of the USENIX Technical
Conference, San Diego, CA, USA, Jan. 1996.

[25] Cisco Systems Inc. Network caching white paper. Published on-line (http://www.
cisco.com/warp/public/cc/pd/cxsr/500/tech/cds wp.pdf), 2000.

[26] Cisco Systems Inc. Data sheet: Cisco Local Director 417 and 417G.
Published on-line (http://www.cisco.com/warp/public/cc/pd/cxsr/400/prodlit/
dsld4 ds.htm), 2002.

[27] K. A. L. Coar and D. Robinson. The WWW common gateway interface version
1.1. Internet Draft <draft-coar-cgi-v11-03>, June 1999.

[28] E. Cohen and H. Kaplan. Proactive caching of DNS records: Addressing a perfor-
mance bottleneck. In Proceedings of the First International Symposium on Appli-
cations and the Internet (SAINT). IEEE, Jan. 2001.

[29] E. Cohen, B. Krishnamurthy, and J. Rexford. Evaluating server-assisted cache re-
placement in the Web. In Proceedings of the European Symposium on Algorithms,
Venice, Italy, Aug. 1998.

[30] D. Coward. Java servlet specification, version 2.3. Technical report, Sun Microsys-
tems, Inc, Palo Alto, CA, USA, Sept. 2001.

[31] O. P. Damani, P. E. Chung, Y. Huang, C. M. R. Kintala, and Y.-M. Wang. ONE-
IP: Techniques for hosting a service on a cluster of machines. In Proceedings of
the Sixth International World Wide Web Conference, Santa Clara, CA, USA, Apr.
1997.

[32] The Distributed ASCI Supercomputer 2. http://www.cs.vu.nl/das2/.

[33] S. Deering and R. Hinden. Internet protocol, version 6 (IPv6) specification. RFC
2460, Dec. 1998.

[34] E. P. L. (editor). Java server pages specification, version 1.2. Technical report, Sun
Microsystems, Inc., Palo Alto, CA, USA, Aug. 2001.

[35] A. Field. Discovering Statistics using SPSS for Windows, chapter Regression.
SAGE Publications, London, UK, 2000.

[36] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and T. Berners-Lee. Hypertext transfer
protocol – HTTP/1.1. RFC 2068, Jan. 1997.

[37] S. Fitzgerald, I. Foster, C. Kesselman, G. von Laszewski, W. Smith, and S. Tuecke.
A directory service for configuring high-performance distributed computations. In
Sixth IEEE International Symposium on High Performance Distributed Computing,
Portland, OR, USA, Aug. 1997.

202 BIBLIOGRAPHY

[38] P. Francis, S. Jamin, V. Paxson, L. Zhang, D. F. Gryniewicz, and Y. Jin. An ar-
chitecture for a global Internet host distance estimation service. In Proceedings of
IEEE INFOCOM, New York, NY, USA, Mar. 1999.

[39] E. Freeman, S. Hupfer, and K. Arnold. JavaSpaces, Principles, Patterns and Prac-
tice. Addison-Wesley, Reading, MA, USA, 1999.

[40] X. Gan and B. Ramamurthy. LSMAC: An improved load sharing network service
dispatcher. World Wide Web, 3(1):53–59, 2000.

[41] X. Gan, T. Schroeder, S. Goddard, and B. Ramamurthy. LSMAC vs. LSNAT:
Scalable cluster-based Web servers. Cluster Computing: the Journal of Networks,
Software Tools and Applications, 3(3):175–185, 2000.

[42] A. Gulbrandsen and P. Vixie. A DNS RR for specifying the location of services
(DNS SR V). RFC 2728, Feb. 2000.

[43] E. Guttman, C. Perkins, J. Veizades, and M. Day. Service location protocol, version
2. RFC 2165, June 1999.

[44] J. Gwertzman and M. I. Seltzer. World Wide Web cache consistency. In Proceed-
ings of the USENIX Technical Conference, San Diego, CA, USA, Jan. 1996.

[45] A. Habib and M. Abrams. Analysis of sources of latency in downloading Web
pages. In Proceedings of WebNet, San Antonio, TX, USA, Nov. 2000.

[46] R. Hinden and S. Deering. IP version 6 addressing architecture. RFC 2373, July
1998.

[47] P. Homburg. The Architecture of a Worldwide Distributed System. PhD thesis,
Vrije Universiteit, Amsterdam, the Netherlands, 2001.

[48] S. Hosseini-Khayat. Investigation of generalized caching. PhD thesis, Washington
University, St. Louis, MO, USA, 1997.

[49] T. Howes. The string representation of LDAP search filters. RFC 2254, Dec. 1997.

[50] Inktomi Corporation. Inktomi webmap. Published on-line (http://www.inktomi.
com/webmap/), Jan. 2000.

[51] S. Iyer, A. Rowstron, and P. Druschel. Squirrel: A decentralized peer-to-peer Web
cache. In Proceedings of the 21st Symposium on Principles of Distributed Com-
puting, Monterey, CA, USA, July 2002.

[52] R. Jain. The Art of Computer Systems Performance Analysis. Wiley, New York,
NY, USA, 1991.

[53] J. Kangasharju, J. Roberts, and K. W. Ross. Object replication strategies in content
distribution networks. In Proceedings of the Sixth International Web Caching and
Content Distribution Workshop, Boston, MA, USA, June 2001.

BIBLIOGRAPHY 203

[54] E. D. Katz, M. Butler, and R. McGrath. A scalable HTTP server: The NCSA
prototype. In Proceedings of the First International World Wide Web Conference,
Geneva, Switzerland, May 1994.

[55] A.-M. Kermarrec, I. Kuz, M. van Steen, and A. S. Tanenbaum. A framework
for consistent, replicated Web objects. In Proceedings of the 18th International
Conference on Distributed Computing Systems, Amsterdam, the Netherlands, May
1998.

[56] A.-M. Kermarrec, I. Kuz, M. van Steen, and A. S. Tanenbaum. Towards scal-
able Web documents. Technical Report IR-452, Vrije Universiteit, Amsterdam, the
Netherlands, Oct. 1998.

[57] D. Lake. The Web: Growing by 2 million pages a day. The Industry Standard, Feb.
2000. Published on-line (http://www.thestandard.com/article/0,1902,12329,
00.html).

[58] S. Lawrence and C. L. Giles. Searching the World Wide Web. Science,
280(5360):98–100, 1998.

[59] S. Lawrence and C. L. Giles. Accessibility of information on the Web. Nature,
400(6740):107–109, 1999.

[60] F. Leighton and D. Lewin. Global hosting system. United States Patent 6,108,703,
Aug. 2000.

[61] E. Levy-Abegnoli, A. Iyengar, J. Song, and D. M. Dias. Design and performance
of a Web server accelerator. In Proceedings of IEEE INFOCOM, New York, NY,
USA, Mar. 1999.

[62] A. Lowe-Norris. Windows 2000 Active Directory. O’Reilly & Associates, Inc.,
Sebastopol, CA, USA, 2000.

[63] A. Luotonen and K. Altis. World-Wide Web proxies. Computer Networks and
ISDN Systems, 27(2):147–154, 1994.

[64] About asynchronous pluggable protocols. Published on-line (http://msdn.
microsoft.com/workshop/networking/pluggable/pluggable.asp).

[65] M. Mitchell, J. Oldham, and A. Samuel. Advanced Linux Programming, chapter
The /proc File System. New Riders Publishing, Indianapolis, IN, USA, June 2001.

[66] P. Mockapetris. Domain names – concepts and facilities. RFC 1034, Nov. 1987.

[67] J. Myers. Simple authentication and security layer (SASL). RFC 2222, Oct. 1997.

[68] Netcraft. Netcraft Web server survey. Published on-line (http://www.netcraft.
com/survey/Reports/index.html).

204 BIBLIOGRAPHY

[69] NetGeo - the Internet geographic database. Published on-line (http://www.caida.
org/tools/utilities/netgeo/).

[70] Netscape Communications. Netscape Proxy Server 3.5 data sheet. Published on-
line (http://wp.netscape.com/proxy/v3.5/datasheet/), 1999.

[71] B. C. Neuman. Scale in distributed systems. In T. Casavant and M. Singhal, edi-
tors, Readings in Distributed Computing Systems, pages 463–489. IEEE Computer
Society Press, Los Alamitos, CA, USA, 1994.

[72] A. Ninan, P. Kulkarni, P. Shenoy, K. Ramamritham, and R. Tewari. Cooperative
leases: scalable consistency maintenance in content distribution networks. In Pro-
ceedings of the 11th International World Wide Web Conference, May 2002.

[73] NLANR caches “vital statistics”, 1999. http://www.ircache.net/Cache/
Statistics/Vitals/.

[74] K. Obraczka and F. Silva. Network latency metrics for server proximity. In Pro-
ceedings of the IEEE Global Communications Conference (GLOBECOM), San
Francisco, CA, USA, Dec. 2000.

[75] V. N. Padmanabhan and J. C. Mogul. Using predictive prefetching to improve
World-Wide Web latency. In Proceedings of ACM SIGCOMM, Stanford Univer-
sity, CA, USA, Aug. 1996.

[76] V. S. Pai, M. Aron, G. Banga, M. Svendsen, P. Druschel, W. Zwaenepoel, and E. M.
Nahum. Locality-aware request distribution in cluster-based network servers. In
Proceedings of the Eighth International Conference on Architectural Support for
Programming Languages and Operating Systems, San Jose, CA, USA, Oct. 1998.

[77] D. L. Parnas. On the criteria to be used in decomposing systems into modules.
Communications of the ACM, 15(12):1053–1058, Dec. 1972.

[78] C. Partridge, T. Mendez, and W. Milliken. Host anycasting service. RFC 1546,
Nov. 1993.

[79] C. Pfeiffer and S. Kulow. The omnivore: Kde’s flexible i/o architecture. Published
on-line (http://www.heise.de/ct/english/01/05/242/).

[80] G. Pierre, I. Kuz, M. van Steen, and A. S. Tanenbaum. Differentiated strategies for
replicating Web documents. Technical Report IR-467, Vrije Universiteit, Amster-
dam, the Netherlands, Nov. 1999.

[81] G. Pierre and M. Makpangou. Saperlipopette!: a distributed Web caching systems
evaluation tool. In Proceedings of the IFIP International Conference on Distributed
Systems Platforms and Open Distributed Processing (Middleware ’98), The Lake
District, UK, Sept. 1998.

BIBLIOGRAPHY 205

[82] G. Pierre, M. van Steen, and A. S. Tanenbaum. Dynamically selecting optimal
distribution strategies for Web documents. IEEE Transactions on Computers,
51(6):637–651, June 2002.

[83] J. E. Pitkow. Summary of WWW characterizations. Computer Networks and ISDN
Systems, 30(1–7):551–558, Apr. 1998.

[84] B. C. Popescu, I. Kuz, M. van Steen, and A. S. Tanenbaum. Security for repli-
cated Web documents. Technical Report IR-498, Vrije Universiteit, Amsterdam,
the Netherlands, June 2002.

[85] D. Povey and J. Harrison. A distributed Internet cache. In Proceedings of the 20th
Australasian Computer Science Conference, Sydney, NSW, Australia, Feb. 1997.

[86] Protozilla: pipes, protocols, and p2p in mozilla. Published on-line (http://
protozilla.mozdev.org/white-paper.html).

[87] L. Qiu, V. N. Padmanabhan, and G. M. Voelker. On the placement of Web server
replicas. In Proceedings of IEEE INFOCOM, Anchorage, AK, USA, Apr. 2001.

[88] M. Rabinovich and A. Aggarwal. RaDaR: a scalable architecture for a global Web
hosting service. Computer Networks, 31(11–16):1545–1561, 1999.

[89] S. Radicati. X.500 Directory Services: Technology and Deployment. International
Thomson Computer Press, London, UK, 1994.

[90] L. Rizzo and L. Vicisano. Replacement policies for a proxy cache. IEEE/ACM
Transactions on Networking, 8(2):158–170, 2000.

[91] A. Rousskov and D. Wessels. Cache digests. In Proceedings of the Third Interna-
tional Web Caching Workshop, Manchester, UK, June 1998.

[92] A. Rowstron. Run-time systems for coordination. In A. Omicini, F. Zambonelli,
M. Klusch, and R. Tolksdorf, editors, Coordination of Internet Agents: Models,
Technologies and Applications, pages 78–96. Springer-Verlag, Berlin, Germany,
Aug. 2001.

[93] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. In Proceedings of the IFIP/ACM In-
ternational Conference on Distributed Systems Platforms (Middleware 2001), Hei-
delberg, Germany, Nov. 2001.

[94] B. Ryner. Writing a mozilla protocol handler. Published on-line (http://www.
mozilla.org/projects/netlib/new-handler.html).

[95] M. Satyanarayanan. Scalable, secure, and highly available distributed file access.
IEEE Computer, 23(5):9–18, May 1990.

206 BIBLIOGRAPHY

[96] P. Scheuermann, J. Shim, and R. Vingralek. A case for delay-conscious caching
of Web documents. In Proceedings of the Sixth International World Wide Web
Conference, Santa Clara, CA, USA, Apr. 1997.

[97] T. Schroeder, S. Goddard, and B. Ramamurthy. Scalable Web server clustering
technologies. IEEE Network, (3):38–45, May 2000.

[98] S. Spero. Analysis of HTTP performance problems. Published on-line (http://
www.w3.org/Protocols/HTTP/1.0/HTTPPerformance.html), July 1994.

[99] H. Stern. Managing NFS and NIS. O’Reilly & Associates, Inc., Sebastopol, CA,
USA, 1991.

[100] W. Stevens. TCP slow start, congestion avoidance, fast retransmit, and fast recovery
algorithms. RFC 2001, Jan. 1997.

[101] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan. Chord: A
scalable Peer-To-Peer lookup service for internet applications. In Proceedings of
ACM SIGCOMM, San Diego, CA, USA, Aug. 2001.

[102] M. R. Syam Gadde and J. Chase. Reduce, reuse, recycle: An approach to build-
ing large Internet caches. In Proceedings of the Sixth Workshop on Hot Topics in
Operating Systems, May 1997.

[103] R. Tewari, M. Dahlin, H. Vin, and J. Kay. Beyond hierarchies: Design consider-
ations for distributed caching on the Internet. Technical Report TR98-04, Depart-
ment of Computer Science, University of Texas, Austin, TX, USA, Feb. 1998.

[104] A. Tridgell. Efficient Algorithms for Sorting and Synchronization. PhD thesis,
Australian National University, Canberra, ACT, Australia, 1999.

[105] V. Valloppillil and K. W. Ross. Cache array routing protocol v1.0. Internet Draft
<draft-vinod-carp-v1-03.txt>, 1998.

[106] L. van Doorn. The Design and Application of an Extensible Operating System.
PhD thesis, Vrije Universiteit, Amsterdam, the Netherlands, 2001.

[107] M. van Steen, F. Hauck, G. Ballintijn, and A. Tanenbaum. Algorithmic design
of the Globe wide-area location service. The Computer Journal, 41(5):297–310,
1998.

[108] M. van Steen, P. Homburg, and A. Tanenbaum. Globe: A wide-area distributed
system. IEEE Concurrency, pages 70–78, January–March 1999.

[109] M. van Steen, S. van der Zijden, and H. J. Sips. Software engineering for scal-
able distributed applications. In Proceedings of the 22nd International Computer
Software and Applications Conference, 1998.

BIBLIOGRAPHY 207

[110] P. Verkaik, E. Amade, A. Bakker, and I. Kuz. Globe Operations Guide. Vrije
Universiteit, Amsterdam, the Netherlands, Aug. 2002.

[111] M. Wahl, A. Coulbeck, T. Howes, and S. Kille. Lightweight directory access pro-
tocol (v3): Attribute syntax definitions. RFC 2252, Dec. 1997.

[112] M. Wahl, T. Howes, and S. Kille. Lightweight Directory Access Protocol (v3).
RFC 2251, Dec. 1997.

[113] J. Waldo. The Jini Specifications. Prentice Hall, Englewood Cliffs, NJ, USA, 2nd
edition, 2000.

[114] D. Wessels and K. Claffy. ICP and the Squid Web cache. IEEE Journal on Selected
Areas in Communications, 16(2):345–357, 1998.

[115] S. Williams, M. Abrams, C. R. Standridge, G. Abdulla, and E. A. Fox. Removal
policies in network caches for World-Wide Web documents. In Proceedings of
ACM SIGCOMM, Stanford University, CA, USA, Aug. 1996.

208 BIBLIOGRAPHY

Summary

An Approach to A Scalable Wide-Area Web Service

Scalability and the World Wide Web

Many problems plague the World Wide Web, one of the greatest being poor performance
which affects the responsiveness of Web sites. A Web site with good performance is
responsive and provides fast downloads of its content. A Web site with poor performance,
on the other hand, is slow in responding to user requests and provides slow downloads
of its content. In extreme cases poor performance can cause a site to become effectively
unreachable.

An important cause of many of the Web’s performance problems is poor scalability
of the underlying architecture. Scalability refers to how well the architecture can handle
increased growth. On the architectural level the Web is based on a client-server model;
it is organized as a decentralized collection of servers serving pages to widely distributed
clients. Although the simplicity of the architectural design is one of the key factors behind
the Web’s phenomenal growth, it is precisely this simplicity that is at the root of the Web’s
scalability problems. This client-server nature leads to two types of scalability problems.

The first scalability problem is that the Web architecture does not scale well with
regards to the (geographic or network topological) distribution of clients. This means that
clients further away from a Web site’s server generally experience worse performance
than those close to the server. As such, a Web site with widely distributed clients often
provides decreased performance compared to a site with mostly local clients.

The second problem is that the Web architecture does not scale well with regards to
the number of client requests processed. Because a Web site is generally served by a
single server, the more clients that request its contents, the higher the load on that server
becomes. Likewise, the more requests a server receives, the more saturated its network
becomes. Both result in decreased performance.

Requirements for A Scalable Web Architecture

In order to solve the Web’s scalability problems it is necessary to provide a scalable ar-
chitecture. Such an architecture will address the two scalability problems by making the
performance of a Web site virtually independent of the (geographic or network topolog-
ical) distribution of that site’s clients and of their access patterns. This means that there

209

210 SUMMARY

will be no distinction between clients closer to or further away from the Web site’s server.
Furthermore, clients will experience the same (high) level of performance, independent
of the amount of requests the Web site’s server must process.

An effective method for achieving this is replication. Replication involves placing
copies (i.e., replicas) of a Web site’s content on other servers in the network. With multiple
copies of the content available clients have a choice of servers to send their requests to.
Their decision is based on which server will offer the best performance. Assuming that
the servers themselves offer similar levels of performance, it is the distance from the
client that sets the servers apart. Requests are, therefore, sent to the server closest to the
client. Not only does this spread the total load over multiple servers, relieving the load
at any single server, but, because clients send requests to their nearest server, the distance
between clients and their servers is shortened thus allowing for better performance.

A central claim of this dissertation is that, in order to be scalable, a Web architecture
not only needs to allow content to be replicated, but it must be flexible enough to allow
the replication policies used to be determined on a case by case basis. We distinguish
between one-size-fits-all solutions, which impose a single policy on all Web sites (or,
more precisely, Web documents), and per-document solutions, which allow policies to be
chosen on a case-by-case basis.

In order to illustrate the differences between the effects of one-size-fits-all and per-
document solutions on performance a simulation-based experiment was performed. This
experiment compared the performance of per-document replication policies to one-size-
fits-all policies. The results show that per-document policies provide better (i.e., closer to
optimal) performance gains than one-size-fits-all policies.

GlobeDoc: A Scalable Web Architecture

Replication has been used as the basis of many proposed solutions to the Web’s per-
formance problems. These solutions include caching, mirroring, server clustering, and
content delivery networks. A drawback of these proposed solutions is that their approach
must be applied universally to all Web content (i.e., they provide one-size-fits-all solu-
tions). This means that all Web resources have to be replicated in the same way and with
the same coherence policy applied to all of them.

In order to address the sclability problems described above we have designed and
implemented a scalable Web architecture called GlobeDoc (Global Object Based Envi-
ronment for Web Documents).1 GlobeDoc is an architecture based on distributed shared
objects (DSOs). DSOs are physically distributed objects, meaning that their state is par-
titioned across multiple disjoint address spaces (which are usually hosted on separate
machines) at the same time. Clients of an object are unaware of such a distribution: they
see only the object interfaces available in their own address spaces. Globe (Global Object
Based Environment) is an existing wide-area distributed system that provides support for
DSOs. GlobeDoc is designed as a Globe application and is based on Globe DSOs.

1It is not the intention of this work to (attempt to) completely replace the current Web infrastructure. In many
cases it works fine as is, so there is no reason to replace it. Instead, the results of this work can be seamlessly
incorporated into the existing Web infrastructure.

211

Conceptually, a GlobeDoc object is a distributed shared object that contains a Web
document, which is a collection of logically related Web pages. Each such page may
consist of text, icons, images, sounds, animations, etc., and may also contain applets,
scripts and other forms of executable code. Each of these parts is referred to as an element.
A GlobeDoc object allows clients to add, remove, access and modify its elements. In the
GlobeDoc model a Web site consists of a collection of GlobeDoc objects.

In GlobeDoc, each object fully encapsulates its own distribution policy. There is no
system-wide policy imposing how an object’s state should be replicated and kept consis-
tent. Moreover, clients need not be aware of the details of the distribution policy applied
by an object. A GlobeDoc object is therefore free to take any possible approach to repli-
cation. It can, for example, decide not to create any replicas at all, or it can create replicas
and offer a best effort consistency guarantee. An object is even free to dynamically create
and destroy replicas as it sees fit. GlobeDoc is location transparent, meaning that, from a
client’s point of view, location is not relevant. As such, clients do not know (nor do they
need to know) where a GlobeDoc object and its replicas are hosted. A client wishing to
use a GlobeDoc object is automatically connected to the replica closest to it. GlobeDoc
provides both a DSO model and a framework that offers support for using, creating and
hosting GlobeDoc DSOs.

In order to access a GlobeDoc object’s contents a client must bind2 to the object and
invoke appropriate methods on it. Naturally, this can only be done by GlobeDoc-aware
clients. Unfortunately, there is no currently existing Web browser that is GlobeDoc-aware.
The GlobeDoc architecture, therefore, also includes mechanisms and services that allow
GlobeDoc-unaware clients to access the contents of GlobeDoc objects, while preserving
the scalability benefits provided by GlobeDoc objects and the GlobeDoc environment.

This dissertation provides a detailed description of the GlobeDoc model, the Globe-
Doc architecture, and its associated services. In particular it describes the design and im-
plementation of the Globe object server, the implementation repository, GlobeDoc clients
(and the services providing access to GlobeDoc objects by GlobeDoc-unaware clients),
and the Globe infrastructure directory service. Furthermore we devised and performed
profiling experiments to measure the performance of each service used in the GlobeDoc
architecture. These experiments gave an indication of the effect of different request char-
acteristics on the work done by each of the services. They also provided information
about which GlobeDoc services form potential bottlenecks and are prime candidates for
optimization.

Conclusions

The main reasons for basing GlobeDoc on Globe is that the Globe infrastructure encour-
ages replication of content and makes this replication transparent. Similarly, Globe allows
each object to have its own associated distribution policy. This makes it possible to deter-
mine and implement an optimal policy for each individual Web document.

2Binding is a Globe specific process and involves contacting Globe specific naming and location services,
which are responsible for finding a client’s nearest replica.

212 SUMMARY

The fact that GlobeDoc content can be replicated means that a GlobeDoc object’s total
load will be spread out over its replicas. Likewise, the traffic at each replica will have a
more local character (i.e., the distance to clients will be smaller). As mentioned earlier
this has a positive effect on performance. Similarly, the fact that new replicas can be added
and removed means that it is possible for a GlobeDoc object to adapt its replication based
on its current situation. For example, if the number of requests dramatically increases a
GlobeDoc object may create new replicas to help handle the load. Similarly, a GlobeDoc
object may create new replicas placed closer to a large group of clients to reduce the
distance between the clients and itself, thus localizing the traffic. This adaptability makes
it possible for the performance of a GlobeDoc object to be independent of the geographic
(or network topographic) distribution of clients and the number of requests they generate.

GlobeDoc, therefore, provides a scalable architecture for the Web and when used
with appropriate replication policies can help to improve the performance of Web sites.
The GlobeDoc architecture can be seemlessly integrated into the current Web architec-
ture, allowing GlobeDoc-based Web sites to be accessed by regular GlobeDoc-unaware
browsers. To show this we have implemented GlobeDoc and used this implementation to
host a number of existing Web sites (in particular the Globe project’s Web site). Future
work for GlobeDoc includes studying, designing, and applying new replication policies,
and in particular looking at adaptive replication policies.

Ihor Kuz

Samenvatting

Een Aanpak voor een Schaalbare Wereldwijd Web Dienst

Schaalbaarheid en het World Wide Web

Er zijn veel problemen die het Web teisteren. Een van de grootste problemen wordt ge-
vormd door slechte prestaties. Prestatieproblemen beı̈nvloeden de reactiviteit van een
Web site. Een Web site met goede prestaties is reactief en biedt snelle downloads van zijn
inhoud. Een Web site met slechte prestaties daarentegen, reageert langzaam op verzoeken
van gebruikers en biedt langzame downloads van zijn inhoud. In extreme gevallen kunnen
slechte prestaties er zelfs voor zorgen dat een Web site geheel onbereikbaar wordt.

Een belangrijke oorzaak van veel van de prestatieproblemen van het Web is de slechte
schaalbaarheid van de onderliggende architectuur. Met schaalbaarhaeid wordt bedoeld
hoe goed een architectuur bestand is tegen toenemende groei. De Web architectuur is
gebaseerd op een client-server model. Dit houdt in dat het Web georganiseerd is als een
gedecentraliseerde collectie servers die Web paginas leveren aan een groep wijdverspreide
gebruikerapplicaties (zoals Web browsers). Hoewel de eenvoud van deze architectuur een
van de belangrijkste redenen voor de snelle groei van het Web is, is het meteen ook de
oorzak van de slechte schaalbaarheid van het Web. De client-server aard van het Web leidt
tot twee soorten schaalbaarheidsproblemen.

Het eerste probleem is dat de Web architectuur niet goed schaalt met betrekking tot de
(geografische of netwerk-topologische) verspreiding van gebruikers. Gebruikers die ver-
der verwijderd zijn van een server ervaren meestal slechtere prestaties dan gebruikers die
dichter bij een server zijn. Dit betekent dat een Web site met wijdverspreide gwbruikers
over het algemeen slechtere prestaties levert dan een Web site met minder wijdverspreide
gebruikers.

Het tweede probleem is dat de Web architectuur niet goed schaalt met betrekking tot
het aantal verzoeken dat afgehandeld moet worden. Omdat de inhoud van een Web site
meestal door een enkele Web server wordt bediend zal de server meer werk moeten ver-
richten wanneer er meer verzoeken voor de inhoud binnen komen. Het is ook zo dat hoe
meer verzoeken worden afgehandeld hoe meer verzadigd het het netwerk wordt. Beide
zorgen voor verlaagde prestaties.

213

214 SAMENVATTING

Vereisten voor een Schaalbare Web Architectuur

Een oplossing voor de genoemde schaalbaarheidsproblemen moet aangeboden worden in
de vorm van een schaalbare architectuur. Zo’n architectuur pakt de twee schaalbaarheids-
problemen aan door ervoor te zorgen dat een Web site onafhankelijk wordt van de (geogra-
fishce of netwerk topologische) verspreiding van zijn gebruikers en het aantal verzoeken
dat afgehandeld moet worden. Dit betekent dat er geen onderscheid wordt gemaakt tussen
gebruikers die zich dichter bij of verder weg van een bepaalde server bevinden. Verder
zullen alle gebruikers dezelfde (hoge) prestaties ervaren, onafhankelijk van hoeveel ver-
zoeken een Web site moet afhandelen.

Een effectieve methode om dit te bereiken is replicatie. Replicatie houdt in dat kopieën
(replicas) van de inhoud van een Web site op andere servers in een netwerk geplaatst wor-
den. Door meerdere beschikbare kopieën van de inhoud hebben gebruikers een keuze
uit servers waar ze hun verzoeken naar toe kunnen sturen. De beslissing van waar een
verzoek naar toe gestuurd wordt wordt gebaseerd op de prestaties die geleverd kunnen
worden. Wanneer er vanuit gegaan wordt dat de servers zelf gelijke prestaties kunnen
leveren, is het de afstand tussen een gebruiker en een server die (nu) bepalend wordt.
Verzoeken worden naar de dichtsbijzijnde server gestuurd. Dit heeft als effect dat de be-
lasting veroorzaakt door alle verzoeken verspreid wordt over meerdere servers. Daarnaast
zal de afstand tussen gebruikers en servers verkort worden. Waardoor de prestaties beter
worden.

Een belangrijke bewering die gemaakt wordt in dit proefschrift is dat wil een Web
architectuur schaalbaar zijn, dan moet zo’n architectuur het mogelijk maken om inhoud de
repliceren, maar moet het flexibel genoeg zijn om replicatie gedifferentieerd toe te passen.
Wij maken een onderscheid tussen een “confectie-maat” aanpak en een “per-document”
aanpak. Een “confectie-maat” aanpak legt één specifiek replicatiebeleid op alle Web sites
(of beter gezegd, individuele Web documenten), terwijl een “per-document” aanpak het
mogelijk maakt om elk document apart volgens een optimaal beleid te repliceren.

Om te laten zien dat er een belangrijk verschil is tussen de “confectie-maat” en “per-
document” aanpakken hebben we simulatie experimenten uitgevoerd. De resultaten lieten
zien dat een “per-document” aanpak significant betere (dwz dichter bij de optimale) pres-
taties biedt.

GlobeDoc: Een Schaalbare Web Architectuur

Replicatie wordt vaak gebruikt als de basis van veel voorgestelde oplossingen voor de
prestatie problemen van het Web. Onder deze oplossingen bevinden zich onder andere
caching, mirroring, server clustering en content delivery netwerken. Een nadeel van al
deze voorgestelde oplossingen is dat hun aanpak universeel toegepast moet worden op
alle Web inhoud (dat wil zeggen, het zijn “confectie-maat” oplossingen). Dit betekent
dat alle Web resources(?) op dezelfde manier moeten worden gerepliceerd en op dezelfde
manier consistent moeten worden gehouden.

Als oplossing voor de eerder genoemde schaalbaarheidsproblemen hebben we een
schaalbare Web architectuur genaamd GlobeDoc (Global Object Based Environment for

215

Web Documents) gemaakt.3 De GlobeDoc architectuur is gebaseerd op gespreide ge-
deelde objecten (oftewel distributed shared objects — DSOs). DSOs zijn objecten die
fysiek gespreid zijn, wat betekent dat hun data ten alle tijden verspreid kan zijn over ver-
schillende processen (op verschillende machines). Gebruikers van een object zijn zich
niet bewust van het feit dat de objecten zo verspreid zijn: zij zien alleen een lokale pro-
grammeerinterface in hun eigen proces. Globe (Global Object Based Environment) is een
bestaand (hoewel nog in ontwikkeling zijnd) gespreid systeem dat ondersteuning biedt
voor gespreide gedeelde objecten. GlobeDoc is ontworpen als een Globe applicatie.

Een GlobeDoc object is een gespreid gedeeld object dat de inhoud van een Web docu-
ment bevat. Een Web document is een verzameling van logisch gerelateerde Web paginas.
Zo’n pagina kan bestaan uit verschillende onderdelen zaols tekst, plaatjes, geluiden, films,
enzovoort. Deze onderdelen van een pagina heten elementen. In het GlobeDoc model be-
staat een Web site uit een verzameling van GlobeDoc objecten.

In GlobeDoc bepaalt ieder object zijn eigen replicatiebeleid. Er is geen globaal beleid
dat bepaalt hoe elk object zijn data (dwz alle elementen) moet repliceren of consistent
moet houden. Het is verder zo dat gebruikers van objecten niets hoeven te weten van het
replicatiebeleid dat door een object wordt uitgevoerd. Een GlobeDoc object is dus vrij
in zijn keuze van replicatiebeleid. Een object kan bijvoorbeeld beslissen om helemaal
geen replicas te creëren, of hij kan beslissen replicas te creëren en zijn best doen om deze
replicas consistent te houden. Een object kan zelfs dynamisch nieuwe replicas creëren
en bestaande replicas verwijderen afhankelijk van hoe veel verzoeken verwerkt moeten
worden. In GlobeDoc is locatie transparant. Dit betekent dat vanuit het oogpunt van een
gebruiker de locatie niet relevant is. Gebruikers weten dus niet waar een GlobeDoc object
en zijn replica’s zich bevinden. Een gebruiker die een GlobeDoc object wil gebruiken
wordt automatisch verbonden met de dichtstbijzijnde replica. GlobeDoc biedt zowel een
DSO model als een omgeving voor het creëren en gebruiken van GlobeDoc objecten aan.

Om de inhoud van een GlobeDoc object op te vragen moet een gebruiker eerst aan
een GlobeDoc object binden.4 Tijdens het binden wordt er een lokale kopie van het object
(vergelijkbaar met een stub) in de address space van de gebruiker gemaakt. De gebruiker
kan methoden op het lokale object aanroepen om de benodigde GlobeDoc inhoud op
te vragen. Binden aan een object en het aanroepen van methodes kan alleen worden
uitgevoerd door GlobeDoc-afhankelijke applicaties. Helaas zijn er weinig GlobeDoc-
afhankelijke applicaties, en bestaan er op dit moment geen GlobeDoc-afhankelijke Web
browsers. De GlobeDoc architectuur biedt daarom ook mechanismen en diensten aan die
het mogelijk maken dat GlobeDoc-onafhankelijke applicaties op een schaalbaare manier
toegang kunnen krijgen tot de inhoud van GlobeDoc objecten.

Dit proefschrift bevat een gedetailleerde beschrijving van het GlobeDoc model, de
GlobeDoc architectuur en de daarmee verbonden diensten. De nadruk wordt in het bijzon-
der gelegd op de beschrijving van het ontwerp en op de implementatie van fundamentele

3Let op dat het niet de bedoeling is om het huidige Web infrastructuur te vervangen. In veel gevallen werkt
het Web infrastructuur goed. Er is dus geen reden om de infrastructuur dan te vervangen. Het is de bedoeling
dat de resultaten van dit onderzoek naadloos geı̈ntegreerd kunnen worden in de bestaande Web architectuur.

4Binden, oftewel binding, is een proces gedefinieerd door Globe en omvat het gebruiken van Globe specifieke
naam- en locatiediensten om een gebruiker de dichtstbijzijnde replica te kunnen vinden.

216 SAMENVATTING

aspecten van de architectuur zoals de Globe object server, op de opslag van implemen-
taties, op GlobeDoc gebruikers applicaties, en op GIDS (een gids van alle GlobeDoc
diensten en servers). Verder worden er experimenten beschreven die zijn uitgevoerd om
te bepalen hoeveel werk iedere component van de architectuur verricht tijdens het verwer-
ken van een verzoek. De resultaten van deze experimenten geven aan wat de effecten van
verschillende karakteristieken van de verzoeken zijn. Er is ook informatie vergaard over
de componenten die potentiële prestatie problemen kunnen veroorzaken en dus het best
kunnen worden geoptimaliseerd.

Conclusies

De belangrijkste reden voor het gebruiken van Globe als basis voor GlobeDoc is dat Glo-
be het gebruik van replicatie mogelijk maakt en dat hij de replicatie transparant maakt
voor gebruikers. Evenzo maakt Globe het mogelijk dat iedere GlobeDoc een eigen repli-
catie beleid kan uitvoeren. Hierdoor kan per Web document een optimaal beleid worden
bepaald en geı̈mplementeerd.

Het feit dat de inhoud van een GlobeDoc object kan worden gerepliceerd zorgt ervoor
dat het werk dat een object moet doen verspreid kan worden over meerdere servers. Te-
vens zal het netwerkverkeer bij ieder van deze servers een lokaal karakter hebben (d.w.z.
dat verzoeken zullen van dichtbij gelegen gebruikers afkomstig zijn). Zoals eerder gezegd
heeft dit een gunstig effect op de prestaties. Het feit dat nieuwe replicas dynamisch ge-
maakt kunnen worden en dat bestaande replicas ook verwijderd kunnen worden betekent
dat het mogelijk is voor een GlobeDoc object om zijn replicatie beleid aan te passen aan
zijn huidige situatie. Als het aantal verzoeken dat een GlobeDoc object moet verwer-
ken drastisch toeneemt, kan een GlobeDoc object bijvoorbeeld nieuwe replicas creëren
om zodoende het werk over meerdere servers te verspreiden. Een GlobeDoc object kan
ook nieuwe replicas creëren in de buurt van een hoge concentratie gebruikers. Hierdoor
kan het de afstand tussen gebruikers en het object (in de vorm van replicas) kleiner maken
waardoor het verkeer een lokaler karakter wordt gegeven. Deze aanpasbaarheid maakt het
mogelijk om de prestaties van een GlobeDoc object onafhankelijk te maken van de (geo-
grafische of netwerk topologische) distributie van gebruikers en van het aantal verzoeken
dat zij genereren.

GlobeDoc, samen met geschikte replicatie beleid, biedt een schaalbare Web architec-
tuur aan, en kan de prestaties van Web sites helpen te verbeteren. De GlobeDoc archi-
tectuur kan naadloos geı̈ntegreerd worden in de huidige Web architectuur, waardoor het
mogelijk is GlobeDoc objecten vanuit bestaande Web browsers te gebruiken. Om dit hard
te maken hebben wij GlobeDoc geı̈mplementeerd en gebruikt voor een aantal Web sites
(waaronder de Web site van het Globe project). Toekomstig onderzoek zal zich richten op
het replicatiebeleid en met name op de dynamische en adaptieve replicatie.

Ihor Kuz

Curriculum Vitae

Ihor Kuz was born in Toronto, Canada on September 15, 1972. He lived in Canada until
he was 15 years old, when he moved, with his family, to the Netherlands. He completed
his secondary education in the Netherlands receiving a European Baccalaureate in 1990
at the European School in Bergen. After taking a year off to do some travelling in North
America, Ihor returned to the Netherlands in 1991 where he studied Computer Science at
the Vrije Universiteit, Amsterdam. After graduating in 1996 (receiving his M.Sc. degree
cum laude) he worked for a while as a programmer before deciding, in 1997, to enroll
with the Parallel and Distributed Systems group at the TU Delft as a Ph.D. student. The
topic of his Ph.D. research was “A scalable Web Architecture” and resulted in the work
described in this dissertation. In 2001 and 2002, while writing his dissertation, Ihor also
worked as a scientific programmer at the Vrije Universiteit, Amsterdam.

Ihor is currently employed as a researcher at National ICT Australia in Sydney, Aus-
tralia.

Publications

• The Globe Infrastructure Directory Service by I. Kuz, M. van Steen and H.J. Sips
in Computer Communications vol. 25(9), June 2002, pp. 835-845.

• Differentiated Strategies for Replicating Web Documents by G. Pierre, I. Kuz, M.
van Steen and A.S. Tanenbaum in Computer Communications vol. 24(2), February
2001, pp. 232-240.

• A Distributed-Object Infrastructure for Corporate Websites by I. Kuz, P. Verkaik,
M. van Steen and H.J. Sips in Proc. IEEE Distributed Objects and Applications
(DOA’00), Antwerp, Belgium, September 2000.

• The Globe Distribution Netowrk by A. Bakker, E. Amade, G. Ballintijn, I. Kuz, P.
Verkaik, I. van der Wijk, M. van Steen and A.S. Tanenbaum in Proc. 2000 USENIX
Annual Conf. (FREENIX Track), San Diego, CA, USA, June 2000.

• A Scalable Middleware Architecture for Advanced Wide-Area Web Services by M.
van Steen, A.S. Tanenbaum, I. Kuz, and H.J. Sips in Distributed Systems Engineer-
ing, vol. 6(1), March 1999, pp.34-42.

217

218 CURRICULUM VITAE

• Replicated Web Objects: Design and Implementation by I. Kuz, A.M. Kermarrec,
M. van Steen, and H.J. Sips in Proc. Fourth Annual ASCI Conf., Lommel, Belgium,
June 1998.

• A Framework for Consistent, Replicated Web Objects by A.M. Kermarrec, I. Kuz,
M. van Steen, and A.S. Tanenbaum in Proc. 18th Int’l. Conf. on Distributed
Computings Systems, Amsterdam, May 1998.

• Towards a Taxonomy of Distributed-Object Models by A. Bakker, I. Kuz and M.
van Steen in Proc. Third Annual ASCI Conf., Heijen, The Netherlands, June 1997.

Index

activity log, 168
address space, 72
applet, 123

GlobeDoc-aware applet, 123

background activity, 170
base region, 76, 142
bind-through service, 138
binder object, 73, 82, 95
binding, 52, 73, 79, 95
BTS, see bind-through service

caching, 8, 13
browser cache, 14
cache coherence, 19
cache replacement, 20, 134
distributed cache, 17
hierarchical cache, 16
hybrid cache, 19
object reference cache, 133
prefetching, 21
proxy cache, 15
server cache, 23

caching of bindings, 74, 133
class archive, 70, 111

class archive object, 111
class archive pool, 116, 118
modular class archive, 114
monolithic class archive, 114

class loader, 111, 120
jar file class loader, 121

class object, 55
client

custom client, 122

GlobeDoc-aware client, 69, 74, 121
GlobeDoc-unaware client, 67, 74, 121,

128
clustering, 23

content-based, see layer 7
L4/2, see layer 2
L4/3, see layer 3
layer 2, 24
layer 3, 25
layer 7, 25

coherence, 19, 28
communication

communication object, 103
connection-oriented group, 102
connection-oriented point-to-point, 102,

103
connectionless group, 102
connectionless point-to-point, 102, 103

communication endpoint, 102
component

Globe runtime services, 78, 95
local storage management, 78, 100
LR management, 77, 81
network management, 78, 102
object server management, 77, 78

consistency, 7
contact address, 48, 52, 115

contact address selection, 79
persistent contact address, 62

contact point, 48, 52, 72, 90, 102
contact point address, 102
contact point creation, 86
multiplexed contact point, 104

219

220 INDEX

native contact point, 102
persistent contact point, 94, 110

content distribution network, 29
cost function, 173

gateway, 176
location service, 179
master object server, 182
naming service, 178
redirector, 175
replica object server, 181
RTT, 183
translator, 176

DAS-2, 165
distributed shared object, see DSO
DN, see LDAP distinguished name
DNS, 155
DSO, 11, 48

composite DSO, 66
dynamic content, 22, 66, 196

element, 55
element properties, 56
element request, 163
root element, 56

execution profiling, 167

fault tolerance, 27, 29
flash crowd, 9, 192

GAP, see GlobeDoc access point
garbage collection, 81
gateway, see GlobeDoc gateway
GIDS, see Globe infrastructure directory ser-

vice
Globe, 11
Globe domain, 70
Globe infrastructure directory service, 76,

142
Globe runtime system, 95
Globe Web components, 196
GlobeDoc, 11

access point, 69, 130
cache replacement, 136
gateway, 69, 74, 128

object, 11, 56
redirector, 75, 131
translator, 69, 75, 130

GWC, see Globe Web components

IDL, see interface definition language
implementation catalog, 112
implementation handle, 70, 115
implementation repository, 55, 70, 95, 111
interface, 48

content interface, 56
document interface, 56
lock interface, 60
object server management interface, 72,

78
property interface, 56
standard object interface, 85

interface definition language, 55
Intranet, 4

latency, 6, 191
network latency, 4

lazy loading, 83, 120
LDAP, see Lightweight Directory Access Pro-

tocol
LDAP directory object, 150
LDAP distinguished name, 152
Lightweight Directory Access Protocol, 149
linear regression, 173
LNS, see local name space
load balancing, 27, 28
local name space, 95, 97
local representative, see LR
location, 144
location service, 52, 70
LR, 48

activation, 90, 93
active LR, 90
client LR, 74
LR administration, 89
LR creation, 79, 82
LR destruction, 88
LR identifier, 79
LR implementation, 70

INDEX 221

LR peer, 48
LR removal, 79
passivation, 90, 92
passive LR, 90
persistent LR, 62, 89
releasing an LR, 88
transient LR, 62, 89

LR table, 87, 89

mirroring, 8, 29
monitoring, 167

name resolution, 147
naming service, 52, 70
network congestion, 4
null-hypothesis test, 174

object
GlobeDoc object, 56
local object, 48
object handle, 52, 70
object identifier, 70
object name, 52, 70

object definition language, 55
object identifier, 150
object server, 77

object server shutdown, 92
object server startup, 93

ODL, see object definition language
OID, see object identifier
OSMI, see object server management inter-

face

P2P, see peer-to-peer
peer-to-peer, 19
persistence

persistence identifier, 90
persistence management, 89
persistence manager, 90

persistent connection, 62
persistent storage, 90, 93
PID, see persistence identifier
plug-in

browser plug-in, 123
GlobeDoc plug-in, 124

policy
adaptive replication policy, 195
coherence policy, 7
distribution policy, 7
one-size-fits-all policy, 36
per-document policy, 36
replication policy, 7

pop-up thread, 81
problems

connection problems, 4
content problems, 2
delivery problems, 4
infrastructure problems, 3
latency problems, 4
metacontent problems, 2
organizational problems, 3
performance problems, 3
rendering problems, 4

profiling, 161
protocol handler

GlobeDoc protocol handler, 125
Internet Explorer protocol handler plug-

in, 127
Konqueror protocol handler plug-in, 127
Mozilla protocol handler plug-in, 126
protocol handler plug-in, 125

protocol identifier, 55
proximity, 148

geographic proximity, 148
network proximity, 148

R squared value, 175
R value, 175
redirector, see GlobeDoc redirector
reference counting, 81
region, 142, 143
region hierarchy, 143, 148, 156

multiple region hierarchies, 148
region name server, 147
region service directory, 143
replica, 7, 51
replication, 7
request distribution, 27
resolver, 73

222 INDEX

DNS resolver, 157
remote service resolver, 95, 98
repository resolver, 116, 118

resource, 141
local resource, 73
resource identifier, 100

resource management, 142
global resource management, 76, 142
local resource management, 76, 142

RID, see resource identifier
RNS, see region name server
round trip time, 164
routing, 28
RSD, see region service directory
RSD preprocessor frontend, 155
RTT, see round trip time

scalability, 5, 147
schema, 150

extensible schema, 152
search

local search, 146
remote search, 146, 157

search filter, 154
separation of concerns, 193
server load, 4
server pool, 23
service

access point, 141
identifier, 143
properties, 141
property attributes, 143
record, 143, 157

shared local replica, 138
SLR, see shared local replica
statistical model, 173
storage object, 93, 100
subobject, 48

communication subobject, 51
control subobject, 51, 52
LRManager subobject, 83
replication subobject, 51
semantics subobject, 51

t-test, 174

translator, see GlobeDoc translator
transparency

location transparency, 11, 71
replication transparency, 28
request distribution transparency, 27

URN
absolute URN, 64
embedded URN, 64
GlobeDoc URN, 63
relative URN, 64

Web document, 11, 55
element, 11, 55

Web document request, 163
Web page, 1
Web resource, 1, 55
Web site, 1

